ポッケルスセンサを用いた高速プラズマ流中の エミッシブプローブ特性の変化の測定

東大新領域 渡邊 将

本研究の背景

プラズマ中の流れ場と電場構造に関する研究

- ・トロイダル磁場配位における非中性プラズマの閉じ込め特性
- 高速流プラズマの平衡(Double Beltrami State)*に関する研究

内部導体系プラズマ閉じ込め装置Proto-RT

流れを持つプラズマの平衡の実験的検証 ・トーラス系非中性プラズマ中の電場構造と閉じ込め特性

Proto-RT俯瞰図

- ・径方向電場の形成
 (外部電場印加、非中性化)
- ・トロイダル方向への流れの駆動
 ⇒径方向電場構造の測定
 エン・ブラローブにたる配付の左測

エミッシブプローブによる電位分布測定

さらに新しい計測法の導入

ポッケルスセンサを用いた電場計測システム

* S.M.Mahajan and Z.Yoshida, Phys.Rev.Lett,81,4863(1998) Z.Yoshida and S.M.Mahajan,Phys.Rev.Lett,88,095001(2002)

本研究の目的と要点

ポッケルスセンサを用いた電場構造の測定

・ポッケルスセンサによる電場構造の測定

- ・エミッシブプローブによる測定結果との比較
- ・ 純電子プラズマ中の測定 ⇒ 二つの測定結果はよく一致する
- 中性プラズマ中の測定 ⇒ 強い内部電場が存在するときプローブは センサよりも電場を小さく評価
- ・強い流れ場でのプローブ特性の評価
 - 流速はE×Bドリフト速度で計算*
 - ・イオン音速を超えるとポテンシャルの測定結果にずれ
 - ⇒ プローブ前方にイオン衝撃波が発生
 - イオン音波中のポテンシャル構造の計算

⇒ 周辺の空間電位が上昇

エミッシブプローブの特性に変化

* H.Saitoh, et al, Phys.Plasmas, 11, 3331(2004)

電場の計測に用いられる方法

- ポテンシャルから算出
 静電プローブ、エミッシブプローブなど
- 直接電場を測定

レーザー誘起蛍光法、ピエゾ・逆ピエゾ効果など

ポッケルスセンサについて

- ・高周波電場計測法の開発(2000年度八木修士論文)
- ・プローブ部の小型化と広帯域での測定(トヨタマックス社TM2414)
- ・電気光学効果のひとつであるポッケルス効果を用いた電場計測法
- ・直接電場を測定することが可能である
- ・Mach-Zehnder干渉計にて干渉した光の強度から電界強度を測定
- ・出力は電場強度に比例、広帯域(50Hz~100kHz)で安定

実験装置Proto-RTの構成

・ポロイダル磁場配位:dipole磁場(磁場強度~100G)
 ・電子入射:LaB₆カソード電子銃(加速電圧~1kV)
 ・中性プラズマ:誘導結合型13.56MHz RF(100W) 水素プラズマ
 ・内部導体電極による外部電場印加(~600V)
 ⇒径方向電場の形成、トロイダル流の生成

異常特性の理論的解釈

プローブ表面付近での衝撃波の発生

センサとの比較実験

- イオン音速を越えた付近にて 測定結果にずれが生じる
- 電子プラズマ中の測定結果では
 このようなずれは生じない

エミッシブプローブの特性

- ・空間電位よりも低いプローブ電位 でエミッションを開始
- ・エミッションしないときのプローブ 特性と分かれる電位を空間電位 として測定
- ⇒ プローブ周辺のポテンシャルが変化 空間電位の測定にずれが生じる

イオン衝撃波の発生が原因

イオンの熱運動を考慮したモデル (無衝突、磁場無視)

マッハ数1.2を越えるとプローブ前方
 にプラズマの空間電位よりも高い
 ポテンシャル構造が生じる
 マッハ数の上昇と共にポテンシャル
 の最大値が上昇
 ⇒エミッシブプローブの特性に変化

まとめ

ポッケルスセンサを用いて電場の計測を行なった

- ・エミッシブプローブによる測定結果との比較
 - ・純電子プラズマ中では二つの測定結果はよく一致
 - 中性プラズマ流中に高速流が駆動しているとき

プローブはセンサより電場を小さく評価

- ・高速流中のプローブの異常特性
 - ・プラズマ流中がイオン音速を超える付近で測定結果に ずれが発生
 - ・衝撃イオン音波中のポテンシャルを計算すると、プローブ 前方にてポテンシャルの上昇を確認
 - ⇒・プラズマの空間電位より高いプローブポテンシャル にてエミッション開始
 - ・エミッシブプローブの特性が変化