レーザー生成プラズマにおける レイリー・テイラー不安定性

境家 達弘

大阪大学レーザーエネルギー学研究センター

アウトライン

- 1. 背景&目的
- ・レーザー核融合
 ・レイリー・テイラー不安定性
 ・レイリー・テイラー不安定性研究の現状
 2. レイリー・テイラー不安定性の観測
 ・観測手法、モアレ干渉法
 ・分散関係
 ・分散関係
 ・分散関係

・カット・オフ面の変調

・レーザー収束の効果

4. まとめ

1. レーザー核融合

レーザー核融合では、高温・高密度爆縮が必要

D-T reaction

$$D+T \rightarrow ^{4}He(3.52MeV) + n(14.06MeV)$$

高温(温度>5keV),高密度(固体密度の1000倍程度)が必要

1. レイリー・テイラー不安定性

レイリー・テイラー不安定性が高密度爆縮を妨げる。

初期にターゲット表面に存在する微小擾乱、あるいはレーザーのインプリントを種に、 その界面でレイリー・ティラー不安定性が成長する.

古典的なレイリー・テイラー(RT)不安定性

1. 安定化機構

レーザー生成プラズマにおけるレイリー・テイラー不安定性

1. 研究目的

レイリー・テイラー不安定性の理論式の検証

実験結果は、シミュレーション結果と比較されている。

◎計測の分解能の制限により、短波長擾乱(~10 μm)の成長観測は困難 ほとんどの実験は、擾乱波長が 20 μm よりも大きいところでRT成長を観測。

◆実験と理論(シミュレーション)を比較し、理論式の検証を行う

- 1. 分散関係を計測:特に短波長領域(~10μm以下)
- 係数βの実験的評価

2. RT不安定性の観測

ドライブレーザーによって加速されたターゲットをX線で照明し、 その透過X線のコントラストの時間変化を観測する。

2. モアレ干渉法

モアレ干渉法は、計測の分解能以下である 短波長擾乱(波長12µm以下)の計測を可能にする。

2. 実験配置図

モアレ干渉法を使ったレイリー・テイラー不安定性観測

2. 実験結果

モアレ干渉法を用いたレイリー・テイラー不安定性の観測結果及び解析

時間の初期には見られないような 擾乱が、時間とともに成長している。 (コントラストがよくなっている。) 強度分布のコントラストから 擾乱振幅を求める。

擾乱振幅:
$$oldsymbol{a}=oldsymbol{a}_{0}oldsymbol{e}^{\prime t}$$

擾乱振幅は、時間に対して 指数関数で成長する。 この時間発展を指数関数で フィッティングしたときの 傾きが成長率 γである。 2. 分散関係

2つのレーザー条件でレイリー・テイラー不安定性の観測を行った。

構成1		構成2
<mark>加速用レーザー(PCL)</mark> 強度(W/cm ²) 波長(µm) パルス幅(ns)	7 ×10 ¹³ 0. 53 2. 3	初期圧縮用レーザー(PCL) 強度(W/cm ²) ~ 1 × 10 ¹² 波長(µm) 0. 53 パルス幅(ns) 2. 3 加速用レーザー(SSD)
パルス波形 Ŷuz 1 ↑ main ist (PCL)		強度(W/cm ²) ~ 1 × 10 ¹⁴ 波長(μm) 0. 35 パルス幅(ns) 2. 5 パルス波形
2.3ns 0 Time [ns]		Taser intensity (SSD) foot (PCL) 2.5ns
		2.010 0 Time [ns]

Time [ns]

2. 分散関係

中波長領域 (λ = 30-120 μm) において、 レイリー・テイラー不安定性の成長率は予測値よりも小さい。

レーザー波長 : **0.53** μm

2. βの決定

すべてのパラメーターを計測して、係数βを評価する

RT成長抑制の係数βを実験的に評価することが最重要!

RT不安定性成長率

$$\gamma = \sqrt{\frac{kg}{1+kL}} - \beta kv_a$$
 $v_a = \frac{\dot{m}}{\rho_a}$

g:加速度, L:密度スケール長, v_a :アブレーション速度, \dot{m} :質量噴出率, ho_a :密度

これまで、

計測器の分解能の制限により、ターゲットの密度分布(ρ_a , L)を測ることは困難であった。

しかし最近、

高空間分解能の計測手法が開発され、密度計測が可能になった。

すべてのパラメーターを計測して、係数 β を評価する

$\gamma = [kg/(1+kL)]^{1/2} - \beta km/\rho_a$

密度分布*

レーザー強度: フットパルス:2 ×10¹² W/cm² メインパルス:0.8 ×10¹⁴ W/cm² ターゲット: CH 40 µm^t + AI 500 Å

* Fujioka, S., et al. (2003), Phys. Plasmas 10, 4784,

2. 加速度の観測:g

 $\gamma = [kg/(1+kL)]^{1/2} - \beta km/\rho_a$

2. 質量噴出率の観測: m

$\gamma = [kg/(1+kL)]^{1/2} - \beta km/\rho_a$

2. RT不安定性の観測:γ

$\gamma = [kg/(1+kL)]^{1/2} - \beta km/\rho_a$

成長率

Laser intensity : Foot-pulse : 2×10^{12} W/cm² Main-pulse : 1.2×10^{14} W/cm² Target : CH 40 μ m^t + Al 500 Å

Laser intensity : Foot-pulse : 3×10^{12} W/cm² Main-pulse : 0.7×10^{14} W/cm² Target : CH 40 μ m^t + Al 500 Å

2. RT不安定性の観測:γ

2. β決定

係数βを実験的に評価

RT不安定性成長率
$$\gamma = \sqrt{\frac{kg}{1+kL}} - \beta k v_a$$

Betti *et al*. (1998);

for plastic (CH) target

For $\lambda = 20 \ \mu m$

$$\beta = 2.0^{+1.8}_{-1.0}$$

For $\lambda = 50 \ \mu m$

$$\beta = 4.8^{+2.3}_{-1.6}$$

2. 分散関係

RT抑制の係数βは、波長依存性を持っている

レーザー波長: **0.53** μm ーザー波長:<mark>0.35</mark> μm :Experiment :Experiment 3 3 ٠ $:\beta = 2.0$ $:\beta = 2.0$ $:\beta = 4.8$ $:\beta = 4.8$ Growth rate (ns⁻¹) Growth rate (ns⁻¹) 2 2 1 0 0 10 100 10 100 Wavelength (µm) Wavelength (µm)

安定化のメカニズムとして、カット・オフ面の変調による効果を提案する。

3. モデル

カット・オフ面との距離の違いにより、 山の部分で圧力が増大し、成長が抑制される。

谷の部分では、 ・カット・オフ面との距離が長い

山の部分では、

・カット・オフ面との距離が、谷の部分に比べて 短くなるので、局所的に圧力が増大

3. カット・オフ面の変調

カット・オフ面の変調により、圧力が増大する。

レーザー吸収面が、アブレーション流によって変調させられる

3. カット・オフ面の変調

2Dシミュレーション "RAICHO" の結果より、 カット・オフ面が変調しているのが分かる。

"RAICHO"

N. Ohnishi et al.,

2D simulation "RAICHO"

Simulation condition (w/o radiation) Laser : I = 7 × 10¹³ W/cm², λ_L = 0.53 µm Target : CH 16 µm^t : λ = 100 µm, a₀ = 0.5 µm

電子密度の等高線(*t* = 1 ns)

" カット・オフ面近傍 " 100 80 Laser Space (µm) 60 カット・オフ面 40 20 0 55 65 70 60 75 Position (µm) カット・オフ面は、アブレーション面の擾乱に 対して逆位相に変調していることが分かる。

J. Quant. Spectrosc. Radiat. Transf. 71, 551 (2001) .

3. 密度変調の分布

レイリー・テイラー不安定性に対する変調による成長の抑制は、 中波長領域 (λ = 30-120 μ m) で起こる。

密度の等高線の振幅($\lambda = 100 \mu m, a_0 = 0.5 \mu m$)

- ●密度の等高線の振幅は、振動減衰している。
- ●擾乱の半波長程度の距離で、反転した 振幅が最大になる。
- *U*λ=0.2-0.8, つまり、カット・オフ面での 振幅が反転する領域においてのみ、 圧力が増大する。

3. 密度変調によるレーザー収束

入射レーザー光の収束効果によるRT成長抑制効果

カット・オフ面の変調による抑制効果
 レーザー収束効果による抑制効果
 ↓↓↓
 圧力をさらに増大させる効果!

3. 密度変調による抑制効果

レーザーの収束効果は、中波長領域の成長を抑制することを示唆

まとめ

1. レイリー・テイラー不安定性の分散関係を計測した。特に、 短波長領域(12μm以下)はモアレ干渉法を導入し、計測した。

結果:a) アブレーションによる抑制効果が確認された。

b) 中波長領域では新たな成長抑制が発見された。

2. レイリー・テイラー不安定性の成長抑制の係数βを実験的に評価した。

結果:a) β = 2.0 for 20 μ m, β = 4.8 for 50 μ m.

b) β には波長依存性があることがわかった。

3. 中波長領域(50µm近傍)の成長率の低下に対して、カット・オフ面近傍での密度擾乱による抑制機構を提案した。

結果:カット・オフ面の変調により、

中波長領域のみ成長が抑制されることが示唆された。

3. レーザー収束効果

レーザーの収束効果のモデル計算

屈折率

$$N(y) = \sqrt{1 - \frac{n_e(y)}{n_c}}$$
 (n_e:電子密度 n_c:カット・オフ密度)

屈折角:
$$d\theta \approx \frac{dz}{dy} N(y) \left[\frac{1}{N(y+dy)} - \frac{1}{N(y)} \right]$$

屈折長: $l = \int_{\infty}^{z} dz \cdot \int_{0}^{\theta} d\theta$

ある界面(z=d)での電子密度擾乱振幅 δn_e は、

$$\delta n_e \approx \frac{n_c e^{-d/L_0}}{L_0} \cdot f(z) \cdot \xi$$

 $(\xi: 擾乱振幅, L_0: 密度スケール長, f(z): 変調分布関数)$

レーザーの収束効果は、

 $l/\lambda \ll 1$

$$\frac{\delta I}{I} \approx \frac{4l}{\lambda} = \frac{k^2 L_c}{\pi L_0} \xi \int_{\infty}^{Cut-off} e^{-\frac{z}{L_0}} f(z) dz$$

3. ダイナミック・オーバープレッシャーの増大

密度変調の発生によるRT成長の抑制効果

3. 考察

密度変調による抑制効果を増大させるメカニズム

1. 入射レーザーの自己収束効果 (*&I/I*の増大)

→ レーザー強度の非一様が増す

2. 磁場による効果 (*ε* < 1)

→ レーザーの非一様の減衰が抑制される(増大する可能性も)

Nishiguchi, A. 2002, Jpn. J. Appl. Phys. 41, 326.