Design of Superconducting Coil System for remodeling JT-60 (JT-60SC)

T. Ando, S. Ishida, T. Kato, M. Kikuchi, K. Kizu, M. Matsukawa, Y. Miura, H. Nakajima, A. Sakasai, and K. Tsuchiya

JAERI

Contents

- 1. Purpose of JT-60SC and Outline of its Superconding Coil Design
- 2. Nb₃Al Conductor Development for TF Coil
- **3.** AC Loss Reduction Technique for Conductor of Cetral Solenoid
- 4. Joint Design
- 5. Conclusion

Configuration of JT - 60SC Coil System JT-60 SC JAERI

Total weight : 2000 tons

Main parameters of the TF coil

Overall Height / Width	6.0 m / 3.7 m
Number of Coils	18
Max. Magnetic Field	7.4 T
Total Stored Energy	1.7 GJ
Centering Force per Coil	33.6 MN
Weight per Coil	23.5 ton

Main parameters of the CS

Height of Winding	5.4 m
Inner Diameter of Winding	1.6 m
Outer Diameter of Winding	2.1 m
Number of Coils	4
Max. Magnetic Field	7.4 T

Main parameters of the EF

Number of Coils	6
Max. Diameter of Winding	10.6 m
Max. Magnetic Field	5 T

Winding Configuration of TF coil and CS JT-60 SC JAERI

Selection of Superconductor for TF Coil JT-60 SC JAERI

NbTi, Nb₃Sn and Nb₃Al strands compared in Jc performance with stainless steel conduit.

Development of Nb₃Al conductor (II) JT-60 SC JAERI

30m length full size conductor fabrication

Cable fabrication : use of a 11 km Nb₃Al strand and a capper wire

Pattern : 3 x 3 x 3 x 3 x 4 = 324

Final stage twist pitch = 350 mm

Conduit fabrication

Material : 316 LN

Shape : Square conduit with a circular hole

Unit length : 10m (Hot extrusion and cold work)

30 m conduit : 2 butt weldings with 3 unit conduits

Conductor fabrication

Cable was inserted into the 30 m length conduit and then it was drawn down to the nominal size

A 30 m Nb₃Al full size conductor was completed

AC Loss Reduction Technique for the conductor of CS (I)

Conductor for CS and EF 4 coil requires low coupling loss of 50 ms level.

Dependence of coil operation frequency on coupling loss was measured in ITER - CSMC test.

This shows that the sintering between strands is broken by electro - magnetic force during coil operation and ac loss is decreased because the resistance between strands is inceased. To break the sintering at room temperature, the application of bending strain to a full size conductor sample was tried and ac loss was measured.

Operation Condition

Max. Transport Current	: 20 kA
Max. Magnetic Field	: 4.8 T
Max. Changing Field Rate	: 2.0 T/s
Operating life	: 10 years
Fatigue life	: 18000 times

Design

Lap type

Use of Ag brazing for contact between cable and Cu pipe

Cable void fraction of 25 %

Requirements

Resistance: < 7nΩ</th>Time constant
of coupling current: < 1s</td>Temperature margin: < 1K</td>

To realize these high endurance and low ac loss the following joint structure is designed.

The Need of JT-60 remodeling with superconducting coil

Investigation of plasma performance in the region beyond the diffusion time of plasma current at the break-even level.

PRINCIPAL PARAMETERS OF JT - 60SC

4 MA
100 s
2.8 m
0.8 m
1.8
0.35
Single Null
3.8 T

Size of the JT-60SC Superconucting Coil_{JT-60 SC JAERI}

Conductors for TF coil, CS and EF coil

JT-60 SC JAERI

	for TF coil	for CS and EF4 coi	I for EF coil
Structure 316 LN Superconducting Strand Pure copper wire	✓ 17mm	 ✓ ✓	-19mm
Max. Magnetic Field	7.4 T	7.4 T	5 T
Nominal Current	19.4 kA	20 kA	20 kA
Operating Temp	4.6 K	5.0 K	4.8 K
SC Material	Nb ₃ Al(or Nb ₃ Sn)	Nb ₃ Sn	NbTi
Coating Material	Cr	Cr	Ni
No. of Total Strands	324	324	486
No. of SC Strands	216	216	486
No. of Cu Wires	108	108	0
Cu/non Cu Ratio	4	2.3	7
Strand Diameter	0.74 mm	0.78 mm	0.70 mm
Void Fraction	36 %	36 %	36 %
Weight of SC strand	32 ton	13 ton	40 ton

Nb₃Al strand development

Strand diameter	: 0.74 mm
Cu non Cu ratio	: 4
Filamentary diameter	: 55 μ m
Jc at 12 T and 4.2 K	: 600 A/mm ²
n value	: 45

R & D of React and Wind Technique

Using the 30 m length full size Nb₃Al conductor the following R &Ds are planned :

- 1. A two turns coil is fabricated and tested
 - Verification test of React and Wind technique Application of same strain as a real TF coil conductor to a two turns coil conductor
- 2. Short Sample test
 - Conductor performance measurement

Ic - B - T AC loss • Joint performance measurement

> Ic - B - T Joule loss AC loss

AC Loss Reduction Technique for conductor of CS (II)

JT-60 SC JAERI

Method to apply 0.2 % strain to the conductors of CS.

0.2% strain is applied to conductors due to expanding the space between the pancakes after heat treatment of the double pancakes. At that time, turn insulation work is carried out. 0.2 % strain is within the region of elastic on the stress - strain curve of a CIC conductor.

The Design of JT-60 remodeling with a superconducting system has been carried out with new technologies to perform the extensive plasma experiment. The features of this system are as follows:

- 1. The TF coil has a magnetic stored energy of 1.7 GJ that is the largest in superconducting coil constructed so far.
- 2. High copper ratio strands (4 for Nb₃Al and 2.3 for Nb₃Sn) were developed to realize high current density in winding and coil fabrication with low cost.
- 3. A Nb₃Al cable-in-conduit conductor with s.s.conduit is considered to be applied to the TF coil, which enable it to make with a react-and-winding technique.
- 4. In order to decrease inter strand coupling loss in CS conductor, a bending strain technique was considered.
- 5. Joints between pancakes use brazing between cable and copper tube to get strongly mechanical contact.