Development of High Cu Ratio Nb₃Al and Nb₃Sn CIC Conductors for Superconducting Toroidal Field Coils of JT-60

The volume of bubbles was measured by a liquid helium level indicator in the FRP chamber.

K. Kizu, Y.M. Miura, K. Tsuchiya, T. Isono, K. Matsui, A. Sakasai, M. Matsukawa, S. Ishida and T. Ando

2. One of the optimization result for Cu/non-Cu ratio

d: Strand diameter=0.74 mm
$$\begin{split} I_{op} &= \frac{\pi}{4} d^2 n_{sc} \frac{1}{1 + r_{cu}} J_{op} \\ I_{\rm lim} &= \sqrt{\frac{\pi}{4} d^2 n_{sc} \frac{r_{cu}}{1 + r_{cu}} \frac{P_b h}{\rho} (T_c - (T_{op} + 1))} \end{split}$$
 n_{sc} :number of superconducting strand = 216 reu:Cu/non-Cu ratio J_{on}:current density at I_{on} I_{lim} : limiting current P_{i} : perimeter=5/6 π dn. *h*:Heat transfer 1000W/m²K $I_{lim}/I_{on}=1.1$ p: copper resistivity at RRR=120 T_c :critical temperature $T_{on} + 1 = 5.6 \text{K}$

Maximum magnetic filed dependence of Cu/non-Cu ratio.

The allowable Cu/non-Cu ratio of the superconduciting strand for JT-60SC was estimated as around 4.

3. Design Parameters of CIC conductor for TFC of JT-60SC

Superconducting material	Nb ₃ Al or Nb ₃ Sn	
Conduit material	SS316LN	
Maximum Magnetic Field	7.4 T	Million .
Operating current	19.4 kA	Actives the
Operating temperature	4.6 K	Real States and
Number of strand	3x3x3x3x4=324	A COLOR OF THE
Number of superconducting strand	216	Same and
Cu/Non-Cu ratio	4	COLOR DAY
Number of copper wire	108	
Diameter of strand	0.74 mm	17 mm
Inner diameter of conduit	17 mm	
Void fraction	36%	

4. Characteristic of developed strand

Major parameters of the developed strand			
	Nb ₃ Al	Nb ₃ Sn	
Outer diameter (mm)	0.74	0.74	
Cu/Non-Cu ratio	4.1	3.6	
Twist Pitch (mm)	50	8	
Jc at 4.2K, 12T (A/mm ²)	601	794	
Histeresis Loss (±3T) (mJ/cc-nonCu)	1742	425	

The non-Cu Jc (definition with 0.1 µV/cm) of developed strands were 1914 A/mm² for Nb₃Al and 1843 A/mm² for Nb₃Sn at 7.4 T, 4.2 K.

Each non-Cu Jc values were fitted by well-known empirical equation shown as solid lines. The equation of ITER [1] and Ando [2] was used for Nb₂Sn and Nb,Al, respectively. These empirical equations show the experimental values very well. Therefore, design parameters of TFC can be determined by using these equations.

> [1]T. Ando et al., IEEE Trans. on Magn. Vol. 32, pp. 2324-2327, 1996 [2] ITER Design Description Document 1.1-1.3, App. C-II. 1997, pp. 1.

The non-Cu Jc for the developed Nb₂Al (closed circle) and Nb₂Sn (open circle) strands at 4.2 K.

The inverse of ramping time (τ_n) dependence of normalized Qc of Nb₃Al and Nb₃Sn CIC conductors

The coupling loss (Qc) was derived from subtraction of the histeresis loss from the total AC loss. The sample length is 440 mm for Nb₃Al and 750 mm for Nb₃Sn.The solid line in Figure are fitting line to reproduce the experimental values.

 $Q_{c} = 2 \frac{Bm^{2}}{\mu_{0}} \frac{n\tau_{c}}{\tau_{p}} \left[1 - \frac{\tau_{c}}{\tau_{p}} \left\{ 1 - \exp\left(-\frac{\tau_{c}}{\tau_{p}}\right) \right\} \right] V$

Bm: Flat top magnetic field of trapezoidal wave τp : ramping time V: sample non-Cu volume

Derived coupling time constant of Nb₃Al was 330 ms.

On the other hand, Nb₂Sn showed the 30 ms. This value is too small compared with the value of Nb₃Sn conductor for CS (240 ms). Heat treatment was conducted without N₂ flow inside conduit for TF conductor. Therefore, the oxidation of Cr plating is considerable reason.

AC loss measurement of bent conductor

In order to reduce the Qc, nt of bent Nb₂Al conductor was measured. The nt was decreased to 250 ms by loading 0.3 % bending strain.

This means that the sintered Cr plating among strands is easily come off by bending.

7. Summarv

1. The non-Cu Jc (definition with 0.1 µV/cm) of developed strands were 1914 A/mm² for Nb₂Al and 1843 A/mm² for Nb₂Sn at 7.4 T, 4.2 K. The Cu ratio of Nb₃Al and Nb₃Sn strand is 4.1 and 3.6, respectively. The observed external magnetic field dependence of non-Cu Jc is fitted well by well-known empirical equations.

2. Measurements of Ic of full size conductors were performed. Measured Ic of Nb,AI and Nb,Sn CIC conductors were 98% and 79% of Ic estimated from Ic in strands because of the thermal contraction effect from stainless steel conduit. The intrinsic strain of superconducting strand by stainless steel conduit was estimated as -0.62 % by empirical equation. The observed Ic values exceed the design value indicating that the developed conductors are sufficiently applicable for TFC of JT-60SC.

3. The AC loss measurements were also performed using the calorimetric method. Coupling time constants of developed Nb,Al and Nb,Sn conductor was 330 ms and 30 ms, respectively. The Nb, Al conductor with bending strain of 0.3 % showed that the nr was reduced to 250 ms.

The results of AC loss measurement of bent

conductor.