28th EPS Conference on Controlled Fusion and Plasma Physics, June 17–22, Funchal–Portugal

Japanese Universities and National Labs

Osaka Univ, NIFS, Kyoto Univ, Kyushu Univ, Kyushu–Tokai Univ, Kobe Univ. of Mercantile Marine, Shinshu Univ, Chiba Univ, Tsukuba Univ, Univ. Electro– communications, Central Res. Inst. Electric Power Industry, Tottori Univ, Tokyo Univ, Toyama Prefectural Univ, Hiroshima Univ, Himeji Inst. Technology, Mie Univ, Nagoya Univ, Yamaguchi Univ, Inst. Phys. Chem. Res.

Overseas Universities and National Labs (EU, USA,RF, China,Korea, Aust.) CEA-Cadarache(France),EcolePolytech.(France), Ecole Polytech. (Switzerland), JET (EU), KFA Juelich (Germany),MPI-Garching (Germany), Oxford Univ. (UK), GA (USA), IFS / UT (USA), LANL (USA), MIT (USA), ORNL (USA), PPPL (USA), UCLA (USA), Univ. of Wisconsin (USA), EfremovInst.(RF), Ioffe Inst.(RF), Kurchatov Inst. (RF), SWIP (China), ASIPP (China),KBSI(Korea), Australian Nat. Univ. (Australia)

Viable tokamak reactor : high β steady-state

Advanced Scenario

- 1. Current drive(CD)
 - **Bootstrap current fraction; 70–80%**
 - CD efficiency ; 3–5x1 0¹ ⁹A/m²/W
 - **Current profile/NTM control**
- 2. High beta ; β_N = 3.5(SSTR)–5.5 (CREST) Active control of RWM/NTM Simultaneous stability to AE
 - Lower disruptivity & dlp/dt
- 3. Confinement ;1 –1 .4 xIPB98–y2 at ne ◀ne^{GW} Edge pedestal / profile stiffness Ex B shear flow, role of ITB
- 4. Divertor ; power and particle
 Heat :90–95% rad., Type II ELM, killer pellet
 Particle: τHe*/τε~5

 PSI: Metallic plasma facing component

JT-60 Mission and Progress

JT-60U

[1] Original Mission :

Achievement of equivalent break–even condition (Q_{DT}^{equ} k) set by AEC

:Accomplished in FY1 996

[2] New mission since 1 991 :

Contribution to ITER physics R&D : contributions in all areas

Establish scientific basis of steady-state tokamak given in SSTR design.

:Significant successes, still further improvement.

4

Current driver development : N-NBI

Improvement of N–NB CD efficiency with Te and Eb(beam energy) was demonstrated NBCD result is consistent with neoclassical theory (T. Oikawa, this conference).

JT-60U

Compact reactor needs high pressure

IT-60

To realize compact DEMO, high pressure operation (~1 MPa) should be realized either by increasing IpBt/ap or βN . So far, high pressure ~0.1 2MPa was achieved in high βp H and RS modes in JT-60U with heating power up to 40MW.

High beta research : profile control

JT-60U

Shape and profile (J(r), P(r)) controls are key for higher beta (β_N). Higher β_N is achievable with high triangularity, broader P(r) with peaked J(r). For long sustainment, control of NTM is important.

High beta research : NTM control

JT-60U

NTM is driven by the loss of b.s. curr. inside the magnetic island : Critical for SS DEMO. **Onset of NTM occurred for \betap(0.7–1.8). Once island was formed, destabilization of** tearing mode due to loss of b.s. curr. persists until βp is low [quench at $\beta p(0.2-0.4)$].

2.5

First 4-unit

Fundamental O-mode ECCD (ITER scenario) was successfully applied to stabilize m/n=3/2 NTM.

High confinement at high n_e ; Impurity seed

JT-60U

Ar puff into H-mode : enhanced confinement at high ne & radiation

Edge pedestal temperaure Tiped increased with Ar puff.

This high Tiped is caused by widening the pedestal width.

HHy2 ~1 at ne /ngw ~ 0.65, Prad/Pabs~80%, detached div., np reduction due to Ar~10%

High confinement at high n_e ; Pellet fuelling

JT-60U

High β p ELMy H-mode 1 MA/ 3.6T , NNB (360keV: ~4MW)

at ne/ngw=0.7, HHy2=1 .05, H89PL=1 .94, βN=2.2 bootstrap~59%, NBCD~25% Prad/Pabs ~60%

High confinement at high ne ; RS Full CD

JT-60U

Full current drive : bootstrap = 55-60% of Ip

others by LHCD (3.6MW; CD at edge) & N-NBCD(2.4MW;CD at core)

n_e(0.7a) increases with widening ITB by LHCD.

HHy, 2 = 1.4, ne^{ave}/n_{Gw} = 0.8, q₉₅ = 6.9, δ_x =0.45, β_N = 2.2

Divertor control : ELM control

 ∞

triangularity

Divertor control : SOL flow

JT-60U

High-field-side SOL plasma was measured, for the first time, with new Inner reciprocating Mach probe: SOL profile and flow pattern are investigated at 3 locations (Inner, Xp and outer midplane)

Flow reversal at outer midplane SOL (low field side), Asakura et al., Phys. Rev. Lett 84 (2000) 3093.

New observation : Current Hole

JT-60U

T. Fujita , to be published

For strongly reversed shear discharges, we observed a region of J~0, "Current Hole".

Current Hole is a long-lived state

Observation of flat temperature inside current hole is consistent with a loss of confining field.

JT-60U

15

Integrated Demonstration : RS and high β_P

Future program ; JT-60 modification

JT-60U

[1] Further improved understanding of physics elements[2] Full demonstration of advanced scenairos for DEMO

Modification of JT-60U

Par am e i er	JT-60U	JT-60SC	ITER-FEAT Pulse Steady-State	
Pulse length Maximum input power	15 s 40 MW (10 s)	100 s 40 MW (10 s) ≘10MW (100 s)	400 s 73 MW	Steady 73 MW
Plasma current lø Toroidal field Ba Major radius Rø Minor radius aø Bongation 1695 Triangularity 895	3-5 MA 4 T 3.4 m 0.9 m 1.8 (δ ₉₅ =0.06) 0.4 (κ ₉₅ =1.33)	4 MA 3.8 T (Pp=2.8 m) 2.8 -3 m (2.8 m ⁻⁷) 0.7-0.9 m (0.85 ⁻⁷) ∡ 1.9 (1.7 ⁻¹) ∡ 0.45 (0.35 ⁻⁷)	15 MA 5.3 T 6.2 m 2.0 m 1.7 0.35	7.8 MA 4.98 T 6.6 m 1.6 m 2.0 0.35

* Nom in al

Summary

[1] JT-60 have achieved original objective of achieving equivalent breakeven condition in 1996.

JT-60U

- [2] Since 1991, we have made significant efforts to extend plasma regime, in confinement, MHD stability, heating and current drive, divertor, energetic particle confinement as necessary conditions for ITER and DEMO such as SSTR.
- [3] We have developed two kinds of steady-state operation scenarios. Integrated demonstration was successfully made. But it still needs further improvements.