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Objectives
Establishment of high beta plasmas in steady-
state by 

- optimization of profiles of pressure, 
  current, rotations, etc.,
- optimization of plasma shaping, 
- establishment of active plasma control

for a compact ( or effective ) reactor.

JT-60SC



Extend to Steady-State, High Beta Regime
JT-60SC
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Production and Sustainment of High beta plasma
JT-60SC

10 sec        20 sec     30 sec         50 sec         100sec 

20MW        20MW     13.3MW      13.3MW        6.7MW

10MW        10MW       6.7MW       6.7MW         3.3MW

10MW        7MW          7MW          3MW             3MW

  4MW    3.75MW      3.1MW         2.4MW         1.7MW

44MW    40.75MW    30MW         25.4MW       14.7MW

Perpendicular NBI

Tangential NBI

Negative Ion Tang. NBI

ECH

Total

To obtain and sustain high beta plasma,
high power heating and current drive system 
of JT-60 is utilized.

Perpendicular NBI

Perpendicular NBI

Tangential NBI

Tangential NBI

Negative Ion Tang. NBI Plasma

Top view of JT-60SC 
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Investigate New High Beta Regimes
JT-60SC

Very High : N~6, 10sec, 1.5MA, t=2.1T, li/R~15sec

High  in SS : N~3, 100sec, 2MA, t=2.8T, li/R~20sec

High  in High Bt : N~3.0, ~30sec, 4MA, Bt=3.8T, q95=3.2, li/R~40sec

Goal: Establish high beta-N plasma
- during non-inductive full CD with large bootstrap current fraction,
- in a steady-state where the duration time exceeds a current diffusion time. 



Approach to high beta regime in 
steady-state and high Bt

(1) Profile control 

  - Current, Pressure (temperature, density), Rotation

(2) Shape control

  - Elongation, Triangularity

(3) Active feedback control

  - Neoclassical tearing mode, Resistive wall Mode

JT-60SC



JT-60SC has various facilities for profile control;
• Pressure ( temp. and density ) profile controlled by heating and particle source
• Current density profile controlled by driven current and bootstrap throu. pressure
• Rotation ( toroidal and poloidal ) profile controlled by momentum source

JT-60SC

ECH / ECCD

Perpendicular 
NBI (85keV, 
20MW) ; 
pressure 
profile control

Tangential NBI (85keV, 
10MW); edge current 
profile control, 
momentum input

Tangential NBI

Negative Ion 
Tang. NBI 
(500keV, 
10MW);center 
current profile 
control

NBI

ECH / ECCD
(110GHz, 
4MW); local 
current and 
pressure 
profile

(1) Profile Control
ISSUES: In plasmas with large bootstrap fraction and high confinement such as 

ITB, pressure and current profiles are strongly coupled each other . 
               Seek the best combination of pressure and current profiles.
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High beta-p operation

High beta-p plasmas ( positive shear ) in JT-60U;
Direction to good stability:

• Broad Pressure profile are good for stability.
• Current density with high shear is good for low-n stability, and low 

and negative shear is good for high-n ballooning stability.

JT-60SC

Beta collapse
( peaked-p)

High beta plasma
( broad-p)



JT-60SC
Self consistent equilibrium of steady-state, high beta plasma in SSTR configuration

Key issue: Self-consistent profile optimization
                   Stabilization of neoclassical tearing mode 

ne,ni  (1- 2)0.5,  Te,Ti  (1- 3) ,  SSTR Scenario 
Monotonic q-profile, low-n kink stable,  1st stable to ballooning mode
for rwall / a=   fbs=50%

STABLE

S

Self consistent analysis: High beta plasmas ( N<3.5 ) without
wall obtained by profile optimization



Reversed shear plasmas is promising for steady state with large bootstrap current. 
In JT-60U, High QDT(=1.25) was obtained but terminated by the beta collapse.
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rwall/a>1.5: • Achievable N is limited at the no-wall ideal stability boundary
               • H-mode edge plasma is better stability than L-mode edge.   
rwall/a<1.3:  • Achievable N is improved to be above the no-wall limit.
               • Improved N discharges are terminated with appearance of RWM.

JT-60SC
Reversed shear operation
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~20Hz

 • n=1 with growth time -1 ~ 10-2 s ~ wall ( wall ~ 10ms )
 •Rotating in the toroidal direction with  f ~ 20 Hz ~ 1/( 2 wall ) 
 • No clear reduction was observed in the toroidal rotation frequency



JT-60SC
Self consistent reversed shear equilibrium of steady-state, high beta plasma 
with large bootstrap current in SSTR configuration

Reversed Shear, High beta plasmas obtained by the
profile optimization and wall stabilization

Key issue: Sustainment profile optimization
                   Stabilization of resistive wall mode  

Low-n kink stable,  1st stable to ballooning mode for rwall / a= 
N increases up to >4  and fbs up to >80% by the wall stabilization: rwall/a=1.2.
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(2) Shape Control

Extend to high elongation and high triangularity region
Consistency to the divertor is under consideration.

JT-60SC
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Control limits of vertical instability

Limits of vacuum 
vessel shape

li=0.7~0.85, p(0)/<p(r)>~2.5, 
p=0.6~1.2, Separatrix is not 

on the dome.

Limited by 
vertical 
instability.

Limited by 
vacuum 
vessel.

ISSUES: Investigate effects of elongation and triangularity 
on the edge stability and the confinement.   

              Optimization of both shapes and profiles.
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JT-60SC
Vertical instability

Growth rate less than 30Hz is stabilized by poloidal coils 
( CS coils and EF coils).

Vertical instability is stabilized under k<1.9

li=0.5, p=1.2, k95=1.8, 95=0.35

Growth rate is reduced by baffle plate.
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In JT-60U, the high triangularity demonstrated the moderate ELM.
In the plasma edge,  plasma may exist in the 2'nd stability of 
ballooning mode.

Development of suitable ELM by plasma shaping 
JT-60SC
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JT-60SC
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(3) Active feedback Control

• NTM stabilization is key issues for positive shear plasma:
Identify Islands by ECE, magnetic probe, etc
Stabilize by ECCD/ECH

• RWM stabilization is key issues for high beta plasma 
above the ideal beta limit without wall:

Identified by sensor coils inside Vacuum Vessel
Stabilize by feedback coils inside Vacuum Vessel

• Real time feedback control of NTM and RWM is key issue 
to find a solution of Steady State and High Beta plasma.

JT-60SC



βN ≈ 5.2 νe
*0.3

βN ∝ νe
*    ρ*
0.4

βN ∝ νe
*     ρ*
-0.2 0.6

βN ∝ (νi
*/εωe*) 

  ρ*0.43 1.3

βN ∝ (νi
*/εωe*) 

  ρ*0.25 1.1

JT-60U
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Regime of NTM unstable in JT-60SC
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Onset N of JT-60SC is ~1-2.2 

( e*~0.01-0.05, *=0.004-0.005 )

Objectives: Establish NTM control technology 
for reactor relevant conditions at high beta-
N during non-inductive full CD with a large 
bootstrap fraction.

ITER-FDR Physics R&D [Sauter]

JET [IAEA, Yokohama 1998]

DIII-D  [Lahaye 2000]

ASDEX  [Lahaye 2000]

JT-60 [IAEA, Sorrento 2000]
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No tearing mode was observed in discharge with NNB

• Beta value is exceed the onset beta scaling with NNB.
• Without NNB, a 2/1 mode appears at t=5.7s. 

JT-60SC

Key issue:  Investigation for profile optimization for the NTM supression.

Reduction of pressure 
gradient at the mode 
rational surface may 
improve the stability for 
NTM.
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NTM Stabilization by ECCD System
JT-60SC

• Design value:110GHz; 1 MW at 
each gyrotron output ( x3 )

• Poloidal injection angle can be 
changed by the steerable mirror.

• Magnetic perturbations with n=2 decreases at the injection angle of 43º.
• Complete stabilization was also obtained in low beta plasma.



EC Current Drive Efficiency
JT-60SC

Localized driven 
current can be 
expected by the 
angle 3.

Evaluation of current 
drive efficiency by ray 
tracing analyses

• Angle 3, correspond to the port, 
is good current drive efficiency.

• Teo=15keV, neo=5x1019m-3 with 
parabolic profile.

• fECW=110GHz, fundamental 
resonance of O-wave.
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Stability with the wall
JT-60SC

Positive/weak 
shear plasma

• Objectives  Establish RWM control technology for reactor relevant conditions;
- at high beta-N over ideal MHD limit w/o wall
- during non-inductive full CD with a large bootstrap fraction

Reversed shear 
plasma

Low-n kink and high-n ballooning mode stability in JT-60SC 
configuration.
Wall stabilization is pronounced in reversed shear plasmas.

 R0 = 2.8 m , a = 0.85 m , 95 = 1.8 , 95 = 0.35

Significant Improvement of Ideal MHD Stability by the Wall 
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• When current drive efficiency is ~0.05 near r=a/2, 
R0=0.28m, neo=5x1019m-3,  EC power of 4MW 
drives the local current of ~150kA.

JT-60SC
Stabilization of NTM

•  N~3.2, q0~1.2, Broad Pressure (A), low li~0.8

Jaux / Jaux
max (= e      )-Hx2

10 8 6 4 2

8

4
2

6

10

-0.2

0.0

0.2

0.4

-0.1 0 0.1 0.2-0.2

rCD - rres

m/n=2/1 , Iaux/Ip=0.02 , w=0.359

0.6

H = 0.045

H = 0.14

H = 0.014

• Significant stabilization of NTM by ECCD can be expected.
• Real time feedback using ECE, etc., and ECCD is key issue.
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Preliminary Analysis: RWM in JT-60SC
JT-60SC

Destabilization of RWM is confirmed. 
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Sensor coils

Tool of RWM Stabilization
JT-60SC

Issue: Algorithm of real time feedback for stabilization
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Sector coils 
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curvature region 
in side the 
vacuum vessel

Control of RWM for n=1,2 modes
Grow time of RWM~ wall~40ms

Response time of sector coils ~24ms< wall



Ip = 3.0 MA,

(Rmag, Zmag) = (2.76 m, 0.20 m),

li =0.97, p = 0.001,

 =1.68,  =0.43,

Vol = 51.9 m3,
n-index= -1.3

• TSC Scimulation:
Standard Configuration
of JT60-SC

Neutral Point Analysis by TSC Simulation

Plasma

Resistive Shell

Double-Walled Vacuum Vessel +

  Up-Down Asymmetric Baffle Plate

• Ip-quench rate = ~ 21 

    msec-1 ( ~ eddy current 
    dacay rate of vacuum 

    vessel)

• Without any of active 

    feedback

• Vertical shifts (dZ) were 

    measured at 3 msec after 

    the start of Ip-quench.

jφ

Vacuum Vessel

Baffle plate

• Baffle plate of JT60-SC is 

    positioned upward by + 15 

    cm.

JT-60SC
• Vertical Displacement Event (VDE) induced during disruptions 

is suppressed by the neutral point.



• Neutral Point of JT60-SC

(A) Up-Down
Asym. Baffle Plate

(B) Up-Down
Sym. Baffle Plate

• Neutral Point exists at ~ 8.0 cm above JT60-SC midplane.
    ( ~ -12.0 cm below the plasma magnetic axis of the standard configuration)
• However, optimization of baffle plate design is required.
• Effects of plasma shape, current profile, equilibrium field structure on the 

location of Neutral Point are now under investigation.
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JT-60SC
Neutral Point of JT-60SC

Baffle plate mainly affects the vertical 
location of neutral point in JT60-SC.



Physics Issue of High beta and steady-state plasma
JT-60SC
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High beta
Large bootstrap

current

Reversed shear
plasma

Stabilized
microinstability

Transport barrier

Externally
applied current

NBI,ECCD

External 
control of Er and
rotation, RF,NBI

Externally
applied heat and

particle,
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Current profile Pressure profile
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Current profile
measurement: MSE
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JT-60SC



• In low beta plasma with low bootstrap current,
correlations of each agent (element phenomena) is weak .

Answer is Yes.

• In the steady state and high beta plasma,
correlation of each agent with nonlinear characteristics is 
strong, which makes the chaos and the complexity.

Answer is question.

JT-60SC

Can we obtain the good confinement with ITB in
beta plasma, steadily?



Summary
Establish high beta in steady-state and high Bt 
plasma by 

- utilization of high power and flexible NBI 
system, and ECH/ECCD, 

- using the active feedback system of ECCD 
and saddle coils.

Exploit the new physics for steady-state plasma
- Nonlinear phenomena
- Chaos
- Complexity

JT-60SC


