High Beta Plasma Research

Presented by T. Ozeki

DOE-JAERI Technical Planning of Tokamak Experiment and IEA Large Tokamak Workshop on Experimental Planning JAERI, Naka 7 - 8 February 2001

JT-60SC

Objectives

Establishment of high beta plasmas in steadystate by

- optimization of profiles of pressure, current, rotations, etc.,
- optimization of plasma shaping,
- establishment of active plasma control

for a compact (or effective) reactor.

Extend to Steady-State, High Beta Regime JT-60SC

Production and Sustainment of High beta plasma

JT-60SC

To obtain and sustain high beta plasma, high power heating and current drive system of JT-60 is utilized.

	10 sec	20 sec	30 sec	50 sec	100sec
Perpendicular NBI	20MW	20MW	13.3MW	13.3MW	6.7MW
Tangential NBI	10MW	10MW	6.7MW	6.7MW	3.3MW
Negative Ion Tang. NBI	10MW	7MW	7MW	3MW	3MW
ECH	4MW	3.75MW	3.1MW	2.4MW	1.7MW
Total	44MW	40.75MW	30MW	25.4MW	14.7MW

Investigate New High Beta Regimes

Very High β : $\beta_N \sim 6$, 10sec, 1.5MA, $\beta_t = 2.1T$, $\tau_{II/R} \sim 15sec$ High β in SS : $\beta_N \sim 3$, 100sec, 2MA, $\beta_t = 2.8T$, $\tau_{II/R} \sim 20sec$ High β in High B_t : $\beta_N \sim 3.0$, ~30sec, 4MA, B_t=3.8T, q₉₅=3.2, $\tau_{II/R} \sim 40sec$

Goal: Establish high beta-N plasma

- during non-inductive full CD with large bootstrap current fraction,

- in a steady-state where the duration time exceeds a current diffusion time.

Approach to high beta regime in steady-state and high Bt

JT-60SC

- (1) Profile control
 - Current, Pressure (temperature, density), Rotation
- (2) Shape control
 - Elongation, Triangularity
- (3) Active feedback control
 - Neoclassical tearing mode, Resistive wall Mode

(1) Profile Control

ISSUES: In plasmas with large bootstrap fraction and high confinement such as ITB, pressure and current profiles are strongly coupled each other. Seek the best combination of pressure and current profiles.

JT-60SC has various facilities for profile control;

- Pressure (temp. and density) profile controlled by heating and particle source
- Current density profile controlled by driven current and bootstrap throu. pressure
- Rotation (toroidal and poloidal) profile controlled by momentum source

Perpendicular NBI (85keV, 20MW) ; pressure profile control

NBI

Tangential NBI

Negative Ion Tang. NBI (500keV, 10MW);center current profile control

Tangential NBI (85keV, 10MW); edge current profile control, momentum input

ECH / ECCD (110GHz, 4MW); local current and pressure profile

JT-60SC

ECH / ECCD

High beta-p operation

High beta-p plasmas (positive shear) in JT-60U; Direction to good stability:

- Broad Pressure profile are good for stability.
- Current density with high shear is good for low-n stability, and low and negative shear is good for high-n ballooning stability.

JT-60SC

Self consistent analysis: High beta plasmas (βN<3.5) without wall obtained by profile optimization JT-60SC

Self consistent equilibrium of steady-state, high beta plasma in SSTR configuration

ne,ni \propto (1- ρ^2)^{0.5}, Te,Ti \propto (1- ρ^3) $^{\alpha}$, SSTR Scenario Monotonic q-profile, low-n kink stable, 1st stable to ballooning mode for rwall / a= ∞ . fbs=50%

Key issue: Self-consistent profile optimization Stabilization of neoclassical tearing mode

Reversed shear operation

JT-60SCReversed shear plasmas is promising for steady state with large bootstrap current.In JT-60U, High QDT(=1.25) was obtained but terminated by the beta collapse.rwall/a>1.5: • Achievable β_N is limited at the no-wall ideal stability boundary• H-mode edge plasma is better stability than L-mode edge.

- **rwall/a<1.3:** Achievable β_N is improved to be above the no-wall limit.
 - Improved β_N discharges are terminated with appearance of RWM.

3 rwall/a<1.3 V_T (kHz .no-wall 3_N (%mT/MA) 2 (n=1) Internal saddle loop rwall/a>1.5 0.1 |B ___ (T/s) Ю \cap 5.9 6.1 6.2 Time(s) 150 \bigcirc foroidal Angle (deg 100 50 0 2 q_{min} -50 -100 • n=1 with growth time $\gamma^{-1} \sim 10^{-2}$ s ~ τ_{wall} ($\tau wall \sim 10$ ms) -150 •Rotating in the toroidal direction with $f \sim 20$ Hz $\sim 1/(2\pi\tau_{wall})$ 6.14 6.16 6.18 6.2 • No clear reduction was observed in the toroidal rotation frequency Time (s)

Reversed Shear, High beta plasmas obtained by the profile optimization and wall stabilization JT-60SC

Self consistent reversed shear equilibrium of steady-state, high beta plasma with large bootstrap current in SSTR configuration

 β N=3, β p=1.6, fbs=65%, SSTR scenario

Low-n kink stable, 1st stable to ballooning mode for r_{wall} / a= ∞

 β N increases up to >4 and fbs up to >80% by the wall stabilization: $r_{wall}/a=1.2$.

Key issue: Sustainment profile optimization Stabilization of resistive wall mode

Profile Optimization toward Steady State Operation JT-60SC

(2) Shape Control

Extend to high elongation and high triangularity region Consistency to the divertor is under consideration.

li=0.7~0.85, p(0)/<p(r)>~2.5, βp=0.6~1.2, Separatrix is not on the dome.

Vertical instability

JT-60SC

li=0.5, βp=1.2, k95=1.8, δ95=0.35 **EF coils** EF3 Growth rate is reduced by baffle plate. EF2 **CS** coils Vacuum Vessel with 2.5 baffle plate ns (n-index with shell effects) ^{5.0} ^{1.6} ^{0.2} CS1 Vacuum Vessel 5 5 EF1 1.0 \mathbf{X} Plasma CS2 . - - O **J**-1-1-Vacuum Vessel Z(M) 0.0 CS3 -n_i (n-index) \times -1.0 FF6 **Stable** CS4 ю і 0.0 1 0 1 0¹**30Hz**1 0² 1 0³ 10^{4} 1 0 R(M) EE5 γ [Hz}

Growth rate less than 30Hz is stabilized by poloidal coils (CS coils and EF coils).

Vertical instability is stabilized under k<1.9

Development of suitable ELM by plasma shaping

Triangularity at 95% flux surface

In JT-60U, the high triangularity demonstrated the moderate ELM. In the plasma edge, plasma may exist in the 2'nd stability of ballooning mode.

Synergistic effects of shape and profile optimization JT-60SC

The highest βN is obtained at a medium peakedness of p(r):

: ELM & βp-collapse (low-n ideal kenk-ballooning)

Y. Kamada et al., Proc. 16th IAEA Conf. Montreal, Vol.1, p247

(3) Active feedback Control

JT-60SC

- NTM stabilization is key issues for positive shear plasma: Identify Islands by ECE, magnetic probe, etc Stabilize by ECCD/ECH
- RWM stabilization is key issues for high beta plasma above the ideal beta limit without wall: Identified by sensor coils inside Vacuum Vessel Stabilize by feedback coils inside Vacuum Vessel
- Real time feedback control of NTM and RWM is key issue to find a solution of Steady State and High Beta plasma.

Regime of NTM unstable in JT-60SC

Objectives: Establish NTM control technology for reactor relevant conditions at high beta-N during non-inductive full CD with a large bootstrap fraction.

JT-60SC

No tearing mode was observed in discharge with NNB JT-60SC

- Beta value is exceed the onset beta scaling with NNB.
- Without NNB, a 2/1 mode appears at t=5.7s.

Key issue: Investigation for profile optimization for the NTM supression.

NTM Stabilization by ECCD System JT-60SC

- Design value:110GHz; 1 MW at each gyrotron output (x3)
- Poloidal injection angle can be changed by the steerable mirror.

- Magnetic perturbations with n=2 decreases at the injection angle of 43°.
- Complete stabilization was also obtained in low beta plasma.

EC Current Drive Efficiency

S

 f_{ECW}=110GHz, fundamental resonance of O-wave. Real-Time Feedback Control of NTMS will be Demonstrated on JT-60U to Prove Reliability of Steady State High Beta Operation on JT-60SC

Stability with the wall

JT-60SC

- **Objectives** Establish RWM control technology for reactor relevant conditions;
 - at high beta-N over ideal MHD limit w/o wall
 - during non-inductive full CD with a large bootstrap fraction

Significant Improvement of Ideal MHD Stability by the Wall Low-n kink and high-n ballooning mode stability in JT-60SC configuration. $R_0 = 2.8 \text{ m}$, a = 0.85 m, $\kappa_{95} = 1.8$, $\delta_{95} = 0.35$ Wall stabilization is pronounced in reversed shear plasmas.

Stabilization of NTM

• βN~3.2, q0~1.2, Broad Pressure (A), low li~0.8 m/n=2/1β**p~2.0** m/n=2/1 , $I_{aux}/I_{\rm p}{=}0.02$, w=0.359 0.4 $(I_{aux}=20kA, I_{D}=1MA)$ 0.6 $\sqrt{H} = 0.014$ 0.3 (I_{aux}=100kA 10 8 6 4 **STABILIZE** 0.4 $I_{\rm p} = 1 MA$ $\sqrt{H} = 0.045$ of CD Wsat 07MA/m² ηaux 0.2 0.2 $\sqrt{H} = 0.14$ 10 0.0 0.1 Peak of CD J_{BS} (at q=2) ~0.35MA/m² ~0.4MA/m² -0.2 DESTABILIZE ECCD is not modulated to 0 0.1 0.2 0.3 0.4 -0.1 0.1 -0.2 0 0.2 the island. r_{CD} - r_{res} $1 / \sqrt{H}$ J_{aux} / J_{aux}^{max} (= e^{-Hx²})

 When current drive efficiency is ~0.05 near r=a/2, R0=0.28m, neo=5x10¹⁹m⁻³, EC power of 4MW drives the local current of ~150kA. Stabilization effect is sensitive to the relative location.

JT-60SC

- Significant stabilization of NTM by ECCD can be expected.
- Real time feedback using ECE, etc., and ECCD is key issue.

Preliminary Analysis: RWM in JT-60SC

JT-60SC Equilibrium of β_N =3.4

L=2 0 =4 0+6 0=8 **Pressure 10**⁻¹ 3 - D RIMI **Safety Factor** 2 . D L. ~10⁻² 20 3-D 4-0 RIMI Current ,;; 10⁻³ Λ RIMI

Resistive MHD calculation with resistive wall effects. (full set MHD model) Vacuum is represented by pseudo-vacuum occupied by high resistive plasma

JT-60SC

Destabilization of RWM is confirmed.

Tool of RWM Stabilization

Issue: Algorithm of real time feedback for stabilization

Neutral Point Analysis by TSC Simulation

• Vertical Displacement Event (VDE) induced during disruptions is suppressed by the neutral point.

JT-60SC

Neutral Point of JT-60SC

JT-60SC

Baffle plate mainly affects the vertical location of neutral point in JT60-SC.

• Neutral Point exists at ~ 8.0 cm above JT60-SC midplane.

(~-12.0 cm below the plasma magnetic axis of the standard configuration)

- However, optimization of baffle plate design is required.
- Effects of plasma shape, current profile, equilibrium field structure on the location of Neutral Point are now under investigation.

JT-60SC

Physics Issue of High beta and steady-state plasma

"Intrinsic Positive Feedback" in the High Bootstrap Plasma

Control of "Intrinsic Positive Feedback"

Can we obtain the good confinement with ITB in beta plasma, steadily? JT-60SC

- In low beta plasma with low bootstrap current, correlations of each agent (element phenomena) is weak.
 Answer is Yes.
- In the steady state and high beta plasma, correlation of each agent with nonlinear characteristics is strong, which makes the chaos and the complexity. Answer is question.

JT-60SC

Summary

Establish high beta in steady-state and high Bt plasma by

- utilization of high power and flexible NBI system, and ECH/ECCD,
- using the active feedback system of ECCD and saddle coils.

Exploit the new physics for steady-state plasma

- Nonlinear phenomena
- Chaos
- Complexity