2001.2.7-8, JAERI-Naka COMBINED MEETING OF DOE / JAERI TECHNICAL PLANNING OF TOKAMAK EXPERIMENT AND IEA LARGE TOKAMAK WORKSHOP ON EXPERIMENTAL PLANNING

Steady-state Plasma Research in JT-60SC

Current Drive and Steady-state Operation -

K. USHIGUSA For JT-60SC Design Team

OUTLINE

 Introduction
 Overview of CD and Steady-state Operation
 Evaluation of Performance
 Summary

1. Introduction

Requirements in JT-60SC

Long Sustainment of Fully Non-inductive Plasmas with High β_N , High n_e/n_{GW} , High BS at a Plasma Regime of a Break-even Class

Background

Japanese Contribution on non-inductive CD

- Approach in JT-60SC
 - **Based on the JT-60 Results**

Japanese Studies trigger Progress

Synchromak (IPP Nagoya, FWCD), WT-2/3 (Kyoto, ECCD), JFT-2/JT-60 (JAERI, LHCD), JT-60U(JAERI, N-NBCD)

Various Non-inductive CD Studies in JT-60/JT-60U

80% BS Current: 1989

Approach to Steady-state Operation

- Non-Inductive Current Drive Mainly, Neutral Beam CD and Bootstrap Current
- Current Profile Control Mainly, Combination of P- and N-NBCD ECCD (Additional Option: LHCD, P-NBCD)
- Operation Scenarios based on JT-60 results High β_p H-mode and Reversed Shear mode
 SSUES
 - Enough CD Power for Non-inductive CD?
 - Operation Regime at Nominal Power?
 - Steady-state Solution of Reversed Shear?
 - Enough Pulse Length(100s) ?

2. Overview of CD and Steady-state Operation Experiments

N-NBCD

- ECCD
- High β_p ELMy H-mode
 Reversed Shear Mode

N-NBCD Studies in JT-60U

N-NB Operation: From 1996, Design:500 keV, 10MW, 10s Long Pulse&High Voltage Conditioning during Construction Phase of JT-60SC

Negative-ion based NBI for JT-60 in the torus hall

Present: Routine Injection of >4MW, >2s at E_B~350keV

Stable operation with E_B~0.5MeV and 100s is required Good Agreement with ACCOME Cal. 1MA N-NB current with η_{CD20}~0.1 Present stable N-NB Operation : ~4MW, ~2s EFIT-MSE gives Driven Current and its profile under collaboration with GA

Identified EC Current Agrees with Fokker-Planck Calculation

High Performance Steady-state Operation Two operation scenarios developed in JT-60U **High** β_p **ELMy H-mode Peaked Pressure Profile Normal/Weak Shear Reversed Shear mode Box-type Pressure Profile Negative Shear**

Steady-state Operation with High β_p ELMy H mode 1.5MA/ 3.7T, q₉₅=4.8, NNB (360keV,~4MW), ECH (~1.6MW), I_{NNB}~0.61MA(η_{CD}=1.5x10¹⁹m⁻²A/W), I_{PNB}~0.26MA, I_{BS}~0.76MA H_{89P}~2.9, HH_{v2}~1.4, β_p =1.9, β_N =2.5 for 1.3s

High Density Reversed Shear mode $HH_{y,2} = 1.4$, $n_e^{ave}/n_{GW} = 0.8$, $q_{95} = 6.9$, $I_{CD} \sim I_p$, $T_e \sim T_i$ with LHCD current profile control

3. Evaluation of Performance Heating and CD Power for 100s operation

N-NBCD: <0.5MeV, <10MW,10s/ ~3MW, 100s P-NBCD: <0.1MeV, <10MW,10s/ ~3.3MW, 100s P-NBH : <0.1MeV, < 20MW,10s/ ~6.7MW,100s ECCD :110GHz, <4MW,10s/ ~1.7MW, 100s

N-NBCD Efficiency approaching ITER regime

CD Efficiency of >2x10¹⁹m⁻²A/W can be expected

CD Performance at 1.5MA

Evaluation of Non-inductive CD by ACCOME Code

N-NBCD: 350keV(1.5MW+1.5MW) P-NBCD:85keV (1.65MW+1.65MW) P-NBH :85keV(3.35MW+3.35MW) n =n_o{0.9 $(1-\rho^2)^{0.5} + 0.1)$ } T =T_o{0.9 $(1-\rho^2)^{1.0} + 0.1)$ }

Full CD Regime at 1.5MA

Full CD at n_e/n_{GW} <1.06 with HH_{y2}=0.8-1.8, β_N (2.8T)<4 can be expected at 1.5MA

CD: 350keV/3MW, 85keV/3.3MW, Heat: 85keV/6.7MW

Hollow current is formed at high density regime

2MA Full CD can be expected at only low n_e regime for normal pressure profile

CD: 350keV/3MW, 85keV/3.3MW, Heat: 85keV/6.7MW PNB =13MW, HH_{y2}=1.25 Z_{eff} =2.5, n_e=2.1x10¹⁹m⁻³ $<T_{e}$ >=5.5keV INB =1.29MA, IBS =0.77MA IOH =-0.06MA

Reversed Shear at 1.85MA

Steady-state solution of Reversed Shear with a wide ITB

10MW of NBCD Power(85keV) 6.7MW of Perp. NB(85keV) n_e=3.17x10¹⁹m⁻³(n_e/n_{GW}~0.4)

> CD: 350keV/0MW, 85keV/10MW, Heat: 85keV/6.7MW, B_t=2.5T

q_o/q₉₅ can be controlled by NBCD Total NB Power, 16.7MW, $I_p = 1.85MA$, $B_t = 2.5TNNB : 350keV$, P-NB: 85keV P_{NNBCD}+ P_{PNBCD} =10MW 0.6 **0.8** 0.0 9⁶0/0³² 0.4 BS/Ip 0.5 q_{0}/q_{95} 0.2 0.9.4 0 0.1 0.2 0.3 0.4 P_{NNBCD} /(P_{NNBCD+} P_{PNBCD}) 0.5 0.8 6 P_{NNB}/P_{CDtot} =0 j_{tot} (MA/m²) 0.6-0.3 0.1 **0.2** Ъ 0.3 0.4 2 0.2 P_{NNB}/P_{CDtot} =0 0.5 0.4 Ο 0.2 0.8 0.6 0.4 0.2 0.8 0 0 0.4 0.6

Transport Simulation for High β, H-mode Time Dependent TOPICS with Multi-Beam 1D Fokker-Planck NBCD Code

Global Parameter becomes steady-state within several tens seconds

Almost uniform E_z is formed at 100s Current profile at 100s is very close to steady-state value R~2.8m, a~0.85m, κ ~1.8, I_i ~1, Z_{eff} ~2, $<T_e$ >~5keV L_i ~1.76µH, R_{Ω} ~6.08x10⁻⁸ Ω ,

Current Penetration Time

R~2.8m, a~0.85m, κ~1.8, l_i~1, Z_{eff}~2, <T_e>~5keV L_i~1.76μH, R_Ω~6.08x10⁻⁸Ω,

τ_{L/R} ~ 28.9 s

Optimization of ECCD <u>for Local Current Profile Control</u>

Optimization (for NTM suppression) Maximize driven current density Minimize width of driven area By selecting Toroidal Injection angle Poloidal Injection angle Poloidal Injection of launcher

Strongly Peaked EC Driven Current ECCD :110GHz Fundamental O-mode (4MW)

 $n_o=5x10^{19}m^{-3}, T_o=15keV$ $n = n_o\{0.95 (1-\rho^2)^{0.5} + 0.05)\}$ $T = T_o\{0.95 (1-\rho^2)^{1.5} + 0.05)\}$ Driven Current <0.2MA at r/a~0.5 ECCD : not main CD tool only for local j control

SUMMARY

- 3MW of N-NBCD, 3.3MW of P-NBCD and 6.7MW of P-NBH Full CD of \leq 2MA with HH_{v2} ~0.8-1.8
- Integrated Performance will be tested at 1.5MA with HH_{y2}=0.8-1.8 for wide density regime (n_e/n_{GW}<1.06)</p>
- Steady-state Solution of Reversed Shear can be expected Full CD of 1.85MA Reversed Shear with HH_{y2} ~1.8 Control of N-NB Power is important to control q_{axis}

For High β_p H-mode scenario, 100s is enough to reach nearly steady-state current profile

Remained Issues

Operation Scenario for Reversed Shear

 Ramp-up Scenario?
 Low dl_p/dt with limited CD/H tools

 Optional Tools for Peripheral CD?

 Additional off-axis P-NBCD?
 Lower Hybrid Current Drive?

- Additional ECCD with wide deposition?
- Momentum Control?
 - Stabilization of MHD instablility
 - Control of Internal Transport Barrier