COMBINED MEETING OF DOE / JAERI TECHNICAL PLANNING OF TOKAMAK EXPERIMENT AND IEA LARGE TOKAMAK WORKSHOP ON EXPERIMENTAL PLANNING

7-8 February 2001 at JAERI Naka

Heat and Particle Control Research

Y. Miura for the JT-60SC Team

Japan Atomic Energy Research Institute Naka Fusion Research Establishment

What is different for a long pulse operation?

Basic Concept of Divertor

Purpose of the JT-60SC Machine

- Steady state research with a break-even condition
- Control a high performance plasma sufficiently long time (exceeding a current diffusion time)

For the Divertor

- Compatible with high β
- Good heat and particle controllability

Divertor Concept

- Vertical target with forced water cooling
 - Surface temperature ~ 1000 degree C at10MW/m²
- Carbon target (does not exclude metal target)
- Strong pumping

 Heat Flux of 10MW/m² may be the maximum (P_{NBI}=40MW, heat flux SOL length 1cm at mid-plane with in/out asymmetry of 1/2)

Heat Flux by an ELM (from ITER Divertor Expert Group)

• All ELM heat flux width is less than ~2cm at the mid-plane

- ΔW_{loss}^{ELM} : Energy loss by an ELM $\Delta W_{loss}^{ELM}/2W_{pad}^{e} = 0.03 - 0.18(DIII-D),$ 0.1 - 0.2(JET), 0.03-0.1 5(ASDEX-U)
- S^{ELM}_{dep} : Width of heat flow by an ELM
 1-2 xS_{steady-state} (JET, ASDEX-U)
 4-5 xS_{steady-state} (DIII-D)
- τ^{ELM}_{dep} : The dureation of an ELM
 0.1-0.2ms (JET) , 0.2- 0.6ms (DIII-D),
 0.3-1ms (ASDEX-U)

JT-60U W shaped-Divertor $\Delta W_{loss}^{ELM}/W_{ped}^{e+i} = 0.08-0.12$ ΔW_{dep}^{ELM} (IRTV) = 1/2-3 ΔW_{loss}^{ELM}

- 1-1.5xS steady-state
- ~0.25ms (IRTV measurement)

ELM heat flux (left): time hestory, (right) profile

From N.Asakura

~3-4 cm SOL on the outer mid-plane should be inside baffle

2nd X-point

- DIII-D shows excellent results for the 2nd X-point
- dRsep>3cm may be necessary

Variation in heat flux sharing is large near DN for ne/nGr \leq 0.7; lesssensitive for high density.dRsep Study, $n_s/n_{Gr} \leq$ 0.7 and > 0.7

- Strong pumping from inner and outer divertor separately.
- The triangularity of ~ 0.35 with strong pumping is planned.

Inside SOL is rapidly expanding with high β_N

- In the present poloidal coil setting, it may be difficult to put about 3cm SOL into the inner baffle.
- dRsep can be set larger than 3cm.

Study of Type II (Grassy) ELM with high δ

- In JT-60U, Grassy ELMy H-mode with Full CD and HH_{v2}~1.2 is achieved.
- The parameter region of the appearance of Grassy ELM is clarified.
- $\delta > \sim 0.4$ & $q_{95} > \sim 5$, $\beta_p > \sim 1.6$

 In JT-60SC, it is necessary to find a way to lower q₉₅ with δ~0.35 to have Grassy ELM.

Evaluation of plasma parameters with SOLDOR / NEUT2D code

Ne (x1019 m-3)

- With strong pumping, there is a possibility to control detachment.
- High field side pellet injection is planned to be used for a fueling.

By K.Shimizu and T.Takizuka

 UEDGE can include the drift and carbon impurity, but treats the neutral as fluid. Then, we are using UEDGE code near the condition of detachment.

13

- (1) Divertor with high beta under steady state condition.
 - Vertical target with forced water cooling .
 - 1000 degree C with heat flux of 10MW/m².
 - Rather open configuration with strong pumping.
 - To operate with Grassy ELM, it is necessary to find a way to lower q_{95} with δ ~0.35.
- (2) Evaluation of plasma parameters with SOLDOR / NEUT2D code shows that the strong pumping has a possibility to control detachment.