COMBINED MEETING OF DOE / JAERI TECHNICAL PLANNING OF TOKAMAK EXPERIMENT AND IEA LARGE TOKAMAK WORKSHOP ON EXPERIMENTAL PLANNING, Naka, Japan, February 7-8, 2001

Machine Design for JT-60SC

Presented by A. Sakasai

Japan Atomic Energy Research Institute Naka Fusion Research Establishment

Contents

- Feature of Engineering Design for JT-60SC
- General View and Arrangement
- Design of Superconducting Coils TF coils and PF coils
- Design of Vacuum Vessel
- Divertor Component R&D
- Operation Scenario
- Summary

Feature of Engineering Design for JT-60SC

Superconducting Coils

Full superconducting Tokamak device (ITER-FEAT, KSTAR, JT-60SC) Nb₃Al wire rod for Toroidal Field Coils

Stabilizing Baffle plates

Passive Stabilizer for VDE Passive Stabilizer for RWM

Plasma control

Vertical Position Control coils for VDE suppression Sector coils for RWM stabilization

Reduction of TF ripple

Ferritic Steel outside/inside Vacuum Vessel (1.2% ---> 0.4%)

Forced cooling divertor
 Water cooling divertor Unit for 10 MW/m²

General View of JT-60SC

Arrangements of Circumferential Systems in Torus Hall

Design of Superconducting Conductors

TF Coils Nb₃Al strands (in comparison to Nb₃Sn):

- Degradation of J_{C} with thermal and bending strains is lower.
- · Time of heat treatment is shorter. SUS316LN for conduits is utilized.
- · Conductor with high voltage and forced cooling by SHe.
- Higher J_C with adoption of sc strand Cu : non-Cu = 4 is obtained (so far, ratio of 2 was established). ---> Cost reduction of sc cable and compact TFC
- CS coils Nb₃Sn strands: AC losses are lower. SUS316LN for conduits is utilized.
- **EF coils** NbTi strands: Low cost and easy fabrication for nominal peak field 5 T.

l t e m s	TFC	C S / E F - 4	EF-1, 2, 3, 5, 6
Structure of Conductor	cable-in-conduit	cable-in-conduit	cable-in-conduit
sc conductor	Nb ₃ Al	Nb ₃ Sn	NbTi
Operating Current (kA)	19.4	20	20
Nominal Peak Field (T)	7.4	7.4	5.0
sc strand Cu : non-Cu	4	2.3	7
sc strand diameter (mm)	0.74	0.78	0.74
Operating Temperature (K)	4.6	5.0	4.8
Temperature Margin (K)	2.4	2.5	1.5
Winding Arrangement	double pancakes	double pancakes	single/double pancakes
Helium Cooling Method	forced cooling (SHe)	forced cooling (SHe)	forced cooling (SHe)
Total Conductor length (km/coil)	2.2	2.5/6.0	4.3 - 5.4

TF Coil System Parameters

Coils :				
Coil shape	D shape			
Numbers of TFC	18			
Length round	14.4 m			
Weight	23 ton/coil			
Coil current	54 MAT			
B _{tor}	3.8 T			
Magnetic energy	1.6 GJ			
Inductance	8.6 H			
TF ripple	1.2%			
(0.4% by Ferritic Steel)				
Conductor :				
Number of Pancak	ie 14			
Total length	40 km			
Cooling :				
Method	forced cooling (SHe			
Number of path	14 paths/coil			
Path length	159 m/path			
Total liquefaction	302 g/s (SHe)			

TF Coil Structure

Coil Case : JJ1 Conductor : Nb₃Al Conduit : SUS316LN Centering Force : Wedge Support Toroidal Tension : Shear Panels

Structure of TFC Conductor

66.8

4

TFC Support Structure and Stress Analysis

Superconducting Conductor for TFC of JT-60SC

1) NbTi

Strand J_C of NbTi conductor :

 $J_c = 1350 \text{ A/mm}^2$ (at 7.4 T) : without conduit at 4.2 K $J_c = 350 \text{ A/mm}^2$ (at 7.4 T): with SUS conduit at 5.6 K

Designed operating temperature : 5.6 K (Inlet SHe temp. : 4.3 K, Nuclear heat load : +0.3 K, Other heat loads: +1 K)

In the case of NbTi conductor, It is impossible to obtain the required $I_{op} = 19.4 \text{ kA} (J_c = 1100 \text{ A/mm}^2)$.

If operating temp. is decreased to 4.4 K, I_{op} is obtained. ---> Inlet SHe temp. : 3.0 K, Running cost up

Insufficient temp. margin to $T_{CS} = 4.5 \text{ K}$

2) Nb₃Sn and Nb₃Al

Strand J_{C} (with SUS conduit at 5.6K) :

 $Nb_3Sn : J_c = 1200 \text{ A/mm}^2 (at 7.4 \text{ T})$ $Nb_3AI : J_c = 1450 \text{ A/mm}^2 (at 7.4 \text{ T})$

 Nb_3Sn : Thermal strain sensitivity is higher, degradation of J_C . Nb_3AI : Ensure sc high performance above the required J_C .

Strand $\rm J_{C}$ with SUS conduit at 5.6 K

PF coil System Parameters

Items	CS	EF1&6	EF2&5	EF3&4
Coils :				
Coil shape	Circular	Circular	Circular	Circular
Number of PFC	4	2	2	2
Averaged radius (m)	0.93	5.31	4.03	1.73
Weight (ton/coil)	12	22	20/27	21/30
Conductors :			_	
Coil current (MAT/coil)	8.3	2.9	3.4/4.2	8.6/10.8
Number of turn	9	12	14/13	24/27
Number of pancake	46	12	12/16	18/20
Magnetic energy (GJ/coil)	0.05	0.10	0.10/0.14	0.16/0.25
Inductance (H)	0.25	0.51	0.48/0.70	0.82/1.26
Cooling				
Cooling :	All formed a clippe (Ω) to since the α			
	All forced cooling (SHe circulating)			
Number of path (paths/coil)	46	24	24/32	36/40
Path length (m/path)	53	200	177/165	130/147
Total liquefaction SHe (g/s)	202	48	43/51	54/56

PF Coil Structure

Block Structure of EF4 and EF5

- EF4 and EF5 are installed under TFC and VV. Adopt block structures for these EF coils.
 - Bad block is removed at troubles
 - → Avoid repairs in large scale.
 - Usually, low coil current operation

under the nominal I_{op}.

→ Reduce possibility of trouble.

Stress Analysis of CS coils

Superconducting Strand and Conductor R&D

Neutron Shielding Efficiency of VV

- VV Structure No.1
- · Low Co contamination SUS with reduction of activation
- · Elongated cross section (polygon poloidal cross section)
- Double wall structure with thin plates
- · Heating/cooling channels inside double wall
- · High Mn steels and water for neutron shield inside double wall

- DD neutron budget/year increases to about 6 times with extended heating duration (max. neutron rates : 2 times).
- Keep the same neutron flux level outside cryostat by shielding effects of VV and cryostat.
- Improve shielding efficiency by high Mn steel with Boron 1%w.

Test of Neutron Shielding Efficiency (R&D)

Neutron Irradiation Test of High Mn Steel with Boron

Development of high Mn steel (VC9) with natural boron

- Trial manufacture of high Mn steel with natural boron 1%w. (VC9 : high strength and low activation)
- High Mn steel with natural boron 2%w and 3%w were easily broken and the machining was difficult.

Evaluation of VV Shielding Efficiency

Nuclear Heat Load for DT exp.

At first, multilayer structure with high Mn steel and water was designed from the JT-60SU design (DT operation).

Nuclear heat load of TFC and radiation shield ---> high Mn steel : water = 7 : 3 is best for DT exp.

Shielding efficiency for DD exp.

Multilayer structure : VC9 / (VC9+H20) = 0.2 - 0.4 for nuclear heat load

Monolayer structure is sufficient to nuclear heat load and radiation shield.

---> Reduction of shielding material amount and simple structure

	JT-60U	JT-60SC
Max. neutron rates	2 x 10 ¹⁷	→ 4 x 10 ¹⁷ (n/s)
neutrons/week	3.1 x 10 ¹⁸	→ 4 x 10 ¹⁹
neutrons/3 months	2.1 x 10 ¹⁹	→ 1.5 x 10 ²⁰
neutronsn/year	3.1 x 10 ¹⁹	2 x 10 ²⁰ →

Vacuum Vessel Structure

VV structure No.2

<Merit>

Heat removal from first wall by water is better.
Baking temp. : 300°C after water removal

<Demerit>

- VV operation temp. : under 100°C limited under 100°C because of using water inside double wall VV.
- Development of super insulation (SI) with heat-resistance to 300°C for thermal shield.

○ VV Structure No.3

<Merit>

 VV operation temp. : under 170°C Heat removal from the wall by N2 gas is possible during shot interval.

Normal SI (polyester film) is utilized.
 ---> Low cost thermal shield structure

<Demerit>

 Baking temp. is limited to 170°C from heatresistance of resin.

<VV Structure No. 2>

<VV Structure No. 3>

Reduction of TF Ripple by Ferritic Steel

Structure of New Vacuum Vessel

Design of New Vacuum Vessel

1) Good controllability by In-vessel components are expected.

- Sector coils for high beta plasma sustainment (stabilized RWM)
- Vertical Position Control coils for VDE suppression
- Ferritic Steel for TF ripple reduction
- 2) Upper Baffle plate is also installed for MHD stabilization

Divertor tiles : Forced Water Cooling (R&D)

<Heat Load Condition> Designed Heat load to Divertor ~ 10 MW/m² \times 100 s

Standard Operation Scenario

High power heating scenario : 40MW-10s

Plasma Current Ramp-up Scenario

Summary

Design of Superconducting

- Superconducting TF coils are designed with Nb₃Al conductors.
- Engineering prospect for TFC is established from Nb₃Al strand and conductor R&D (sc strand Cu : non-Cu = 4 and low AC losses).
- Designed D shaped TF coils satisfy allowable stress from the stress analysis of conductors and coil case.
- Superconducting PF coils are designed with Nb₃Sn and NbTi conductors.
- Nb₃Sn and NbTi for PFC are under strand and conductor R&D (sc strand Cu : non-Cu = 2.3 and low AC losses)

Design of Vacuum

- Structure of vacuum vessel strongly depends on neutron shielding efficiency. The VV structure design is required the satisfaction of allowable nuclear heat load and radiation shielding, and installation of in-vessel components.
- Forced cooling divertor is designed for steady state research. Forced cooling divertor tiles with heat removal of 10 MW/m² in steady state.

Detailed design for main components will be done