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Sustainment of detached divertor to reduce target heat load

1. Introduction

Helium ash exhaust from improved confinement plasma

Efficient impurity shielding from main plasma

Compact design of the divertor is required, with satisfying

Divertor pumping and SOL flow studies will contribute to optimize 
the divertor design.

Divertor performance:

Particle control in SOL and divertor

Divertor geometry

In-out asymmetry, Detachment, MARFE etc.Pumping flux

Pump system

SOL plasma transport

Fuelling (puff & pellet)

Plasma profile and Flow in SOL&divertor



2. Pumping in the W-shaped divertor
Pumping from private flux region (with dome)  has advantages 
for detachment control, He exhaust, reduction of carbon generation.
Leak of neutrals was anticipated for B-s-P geometry 
due to in-out asymmetries of recycling and 
separation btw. pumping-slot and strike-point 
(δgap-in ,  δgap-out ).
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Inner private flux pumping case:

MARFE occurs

Gas puff rate

Recycling

D2 pressure
(under baffle)

w pump
(δgap,in  = 3.5cm)

ΦNB+ ΦGP
W-P = Φabsorb  + Φpump

w/o pump
ΦNB+ ΦGP

W/O-P = Φabsorb

Φpump  = ΦGP
W-P - ΦGP

W/O-P 

ΦNB        =  1x1021 /s

Φpump   =  8x1021 /s :

ΦGP
W-P   = 13x1021 /s

ΦGP
W/O-P=  5x1021 /s

Φabsorb  =  6x1021 /s :

Pumping speed ~ 40 m 3/s

 comparable to pumping flux

Pumping flux is deduced from gas puff rates for pump ON and OFF

PD2=0.75 Pa
(under baffle )

Pumping ratio: 

 Ip =1.5MA, BT =3.5T, q95 =3.94, PNB =11MW   

ELMy H-mode plasma:

Φpump Φrecycle

 is estimated to be 3%.
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UEDGE/DEGAS2 to evaluate pumping&leak fluxes 

Neutral transport DEGAS2

SOL& Divertor plasma 
(Background plasma) 

UEDGE

3-D Monte-Carlo code 

2-D fluid code 

 

fluid neutral model 
sputtered impurity 

Iterative calculation between UEDGE-DEGAS2 was not used.

Pumping flux was calculated for various 
pumping ratio at common exhaust slot: 
fpump  = 0 - 0.5. 

Background plasma was fixed.

Code-run was supported by Drs G. D. Porter, 
 T.D. Rognlien and M.E. Rensink (LLNL).
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Closure-operation:  net leak at outer pumping-slot  can be minimized.

Net pumping ratio is increased by 60% (1%         1.6% of Φrecycle ).

Pumping ratio ( δg-In= 1, δg-Out= 0.5cm)

37%
63%

+19.19 -15.84
2.7% pump

net pumping

+16.18 -14.61
1.56% pump

 +9.21 -10.34
1.1% leak

net leak

net pumping ratio

fpump  = 0.1

Pumping ratio ( δg-In, δg-Out  = 3cm)

+12.76 -10.39
2.4% pump

net pumping

62.5% 37.5%

fpump  = 0.1
+9.45 -8.50
0.95% pump

net pumping ratio

+4.28 -5.72
1.4% leak

net leak

( normalized by total recycling flux [100%] )

Net leak at outer pumping-slot  is not suppressed for fpump  up to 0.5
in the attached divertor (due to in-out asymmetry of recycling).



cryo-pump

1m

fpump
in

fpump
out

cryo-pump

Dome

Main plasma

BT = 3.6 T
Ip = 3 MA

1m

SOLDOR/ NEUT2D for divertor design of JT-60SC

Neutral transport NEUT2D

SOL& Divertor plasma SOLDOR

2-D Monte-Carlo code 

2-D fluid code (Newton-Raphson method) 

 

Sputtered impurity will be introduced 
with Monte-Carlo calc. (IMPMC) 

Separate 2 pump system is planned to obtain 
large pumping speed. 

Complex divertor mesh ( non-orthogonal mesh,
                                               Finite Volume Method)

1/2 transparent

1 common pump system 
is tested. 



Bottom wall angle may affect neutral leak at the outer divertor.
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= 0.047

Separate pump system
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= 0.03

1.3% pump
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0.44=7.27-6.83

3.1

Net neutral leak is seen for one pumping in detached divertor.

Optimizations of wall & target angles, pump location will be required.
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open
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Partially detached divertor (w/o x-point MARFE) was sustained for closure 
B-s-P: Plasma density range was extended higher than I-s-P.
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Ref. H. Tamai et.al. , 
Proc. 26th EPS Conf. on Contr. Fusion and Plasma Physics 
(EPS, Mulhouse), 23J (1999) 409
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He exhaust efficiency was improved in the closure operation of B-s-P

He beam injected into ELMy H-mode plasma 
(τE = 0.13s, HITER-89P~1.2)
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High-field-side SOL plasma was measured (2001.4- ), for the first time, in the divertor tokamak. 

SOL plasma profile and flow pattern were measured at 3 locations 
(Inner, X-point and outer midplane) with reciprocating Mach probes.

R (m) 2  3  4
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 (

m
)

SOL

SOL

(scan 35cm/0.5s)
Inner Mach probe X-point Mach probe

(scan 25cm/0.5s)

Midplane Mach probe
(scan 25cm/0.5s)

Mach probe electrodes
Double probe

field lines

3cm

Floating probe(Vf)

Up-stream side 
(midplane side)

jjjj ssss
up

downjjjjssss

Down-stream 
side (divertor side)

js-ratio  (jsdown-stream  /jsup-stream ) shows 
SOL flow direction along the field lines.

Mach number is calculated 
 using Hutchinson's formula:
M = 0.35 ln[ jsdown  /jsup  ] 

Ref. I.H. Hutchinson, Phys. Rev. A37 (1988) 4358.

3. SOL plasma flow study 
SOL flow is an important factor to determine the divertor condition:
 in-out asymmetry of particle flux, impurity shielding.



"Flow reversal " occurs: narrow near High-field-side separatrix, 
                                and   wide (5cm) at Low-field side midplane.

Mach probe measurement suggests  

mapping to outer midplane

Inner SOL 

Outer midplane

to Outer 
divertor 

field lines to divertor
shot#39088
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SOL flow projected on the poloidal 
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parallel SOL flow (1) stagnating between x-point and outer midplane, 
                      and (2) from outer midplane to the inner divertor.

Flow reversal in the SOL of the main plasma was observed in Alcator C-MOD, ASDEX-U and JET.

L-mode: I p=1.6MA, BT=3.3T, PNB=4.3MW

flow reversal

flow reversal



Large flow velocity was observed at outer flux surfaces 
above inner baffle (High-field side) and near x-point (Low-field sides).

Reversal of ion grad-B drift direction  produces SOL flow  towards divertor. 

mapping to outer midplane

to outer 
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field lines to divertor shot#39213

to Inner 
divertor 
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Mechanisms to produce parallel SOL flow 

+ Local ionization is enhanced in SOL/divertor.   

Sheath model (plasma flow along field lines):

In torus, ion drifts perp. to field lines affect the 
SOL flow  (the direction changes by B T).

Flow is driven towards divertor (sink).

Recycling near divertor "Flow reversal"
Exp. shows flow towards divertor.

Momentum diffusion from the edge plasma 

CL Plasma top (stagnating)

Ip BT

Divertor (sink)

neutral 
ionization

"flow reversal"

CTR Vt at edge

Exp. shows CTR rotation at edge in JT-60U.

Conventional sheath model

"Flow reversal"  near separatrix can not explained.

(1) grad-B drift

(3) diamagnetic flow 
(2) Er x B drift

CL

Ip BT

Divertor

B drift

∆

diamag flow

ErxB drift

Er

Those drift velocities are in-out asymmetry 
since B = B0/R



 "Pfirsch-Schlüter flow" caused by ion drift in torus . 
"Flow reversal" for ion grad-B towards divertor can be explained as

Parallel flow near main plasma separatrix is driven to the plasma top: 
"flow reversal"  is decreased at high density.

A candidate mechanism:
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Flow velocity to divertor is increased / decreased  for ion   B drift 
towards / away from  divertor (at the outer flux surfaces).
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Introduction of ion drifts  into SOL/divertor simulation (UEDGE) produces 
parallel SOL flow to the Inner divertor  (preliminary results). 

Mach numbers (at inner SOL and Xp) 
are smaller than measurements 
(using Hutchinson's formula) .
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4. Summary

SOL plasma flow study 

Pumping in the divertor:
  Maximum pumping ratio and improved performance were observed
in the detached divertor, provided that closure operation was available.

  SOL flow measurements and introduction of drifts into simulation 
show that parallel SOL flow is produced from Low- to High-field side 
(for ion grad-B drift towards divertor)  .

  Optimization of pump location, wall & target angles, pump duct will 
be required to obtain efficient pumping for a compact divertor.

  SOL flow affects in-out asymmetries in plasma&recycling fluxes 
in the divertor (will also affects impurity transport). 

Quantitative understanding of the SOL flow and neutral/molecule 
transport in sub-divertor will contribute to a compact divertor design.


