Colloquium of Max Planck Institute fur Plasma Physics March 8, 2001

JT-60 Modification Plan for Long Pulse Advanced Tokamak Research

Presented by M. Kikuchi

Japan Atomic Energy Research Inst. Naka Fusion Research Establishment

OUTLINE OF TALK

- Fusion Development Strategy
- Progress of Confinement and ITER as one step to DEMO
- Advanced tokamak researches
- Scientific achievements of JT-60 and its Infrastructures
- Proposed Modifications
- New research area and Significance of Long Pulse Experiments
 - Q~1 sustainment
 - Long sustainment of full CD plasma
 - Long sustainment of high N plasma
 - Advanced Divertor
 - Technological Research Subjects
- Summary

Fusion Development Strategy

The subcommittee on fusion development strategy (N. Inoue chair) identified fusion development strategy in its report to the ITER special committee.

Reprot on the technical feasibility of fusion energy, May17,2000

Progresses of plasma confinement is extremely fast (similar to DRAM) and is ready to high Q burning expl.

ITER-FEAT as one step to **DEMO**

[1] Tokamak is ready for -dominant burning experiments".

ITER-FEAT design is sufficient to sustain burning plasma with Q=10- infinity.

 [2] Tokamak is most advanced in scientific understanding.
 ITER-FEAT provides new scientific regime of self-heated plasma.

Tokamak still needs improvement to become an attractive fusion reactor.

ITER-FEAT design places more emphasis on steady-state operation expecting future advances in tokamak researches.

Advanced Tokamak Researches

[1] AT research : Significance of large number of tokamaks
[2] JT-60 research : High bootstrap full CD, ITB for steady-state tokamak
[3] Continuation of JT-60 program : important to keep Japanese potential
[4] JT-60 Modification : advance SS Tokamak further (ITER, SSTR)

Scientific Achievements of JT-60

JT-60 Infrastracture is valuable Properties for Fusion

Proposed JT-60 Machine Modifications

Major Modifications

- [1] All superconducting magnets for long pulse.
- [2] 4MA plasma current for Q~1 plasma.
- [3] Improved shaping, ECCD and RWM coils for AT operation.

8

- [4] N-NBCD+ECCD for reactor relevant current drive.
- [5] use of RAF(in-vessel components) for DEMO.

Parameter	JT-60U	JT-60SC	ITER-FEAT Pulse Steady-State	
Pulse length Maximum input power	15 s 40 MW (10 s)	100 s 40 MW (10 s) 10MW (100 s)	400 s 73 MW	Steady 73 MW
Plasma current lp Toroidal field Bt Major radius Rp Minor radius ap Elongation 95 Triangularity 95	3-5 MA 4 T 3.4 m 0.9 m 1.8 (₉₅ =0.06) 0.4 (₉₅ =1.33)	4 MA 3.8 T (Rp=2.8 m) 2.8 -3 m (2.8 m*) 0.7-0.9 m (0.85*) – 1.9 (1.7*) – 0.45 (0.35*)	15 MA 5.3 T 6.2 m 2.0 m 1.7 0.35	7.8 MA 4.98 T 6.6 m 1.6 m 2.0 0.35
	* Nominal			

[1] Long sustainment of $Q \sim 1$ plasma (100s, dis. > skin).

- (p* and *close to ITER ss operation)
- [2] Long sustainment of Full CD plasma (100s).(RS, weak positive shear, N-NBI)
- [3] Long sustainment of high beta (N~3-4.2) plasma.

(shaping (high & and local pitch-d /dr), ECCD for NTM, Mode-control-coil for RWM)

[4] Divertor optimization

(compatibility with high and , metallic PFC,

forced cooling divertor, long particle exhaust)

[5] Reduced Activation Ferritic steel for PFC components

Significance of Long Pulse Experiments

- [1] Long sustainment is key mission of ITER and it will be realized in ITER.
- [2] Extension of long sustainment of high fusion performance ($n\tau T \sim 10^{20}$ - 10^{21} keVsm⁻³) will certainly contribute to optimize long pulse operation of ITER.
- [3] Furthermore, long sustainment of non-inductively driven (high bootstrap)
 - discharges will have a great impact to the realization of steady-state tokamak reactor.

New research area #1

Q~1 sustainment much longer than skin

Steady-state Research

Historical remarks on steady-state researches

1992-2000; For all IAEA fusion energy conferences, JT-60 team reported progresses towards steady-state operation of tokamak.

High Performance Full CD Regime in JT-60U

Both weak shear and negative shear regimes are proposed for SSTR. JT-60U results are quite promising for both scenarios.

Heating and CD System

Current Drive with N-NB (& ECRF) is a unique feature of JT-60 which is most reactor-relevant from engineering point of view.

Present H&CD system becomes powerful for long pulse experiments through minor modifications.

New research area #2 Long Sustainment of Full CD plasma(>100s)

Full non-inductive sustainment of high-bootstrap plasma sufficiently exceeding τ_{skin} . Physics of non-linear loop (J_{bs}-P-Er') in high-bootstrap plasma.

New research area #2 High performance 3 MA Full CD

Time Dependent TOPICS with Multi-Beam 1D Fokker-Planck NBCD code

The economically viable fusion reactor requires average plasma pressure <P> of ~1MPa(10atm.) to produce high fusion power density ($P_{f} <P >^{2}$). High N and high Bt are required to reach such high pressure plasma.

$$<\mathbf{P}>(\mathbf{MPa})=0.004 \ \beta_{\mathbf{N}} \frac{\mathbf{I_pB_t}}{\mathbf{a_p}}(\mathbf{MA} \ \mathbf{T/m})$$

New research area #3 Long sustainment of high _N plasma in JT-60SC

Effective shaping, profile control, and feedback MHD stabilization are required for long sustainment of the high beta plasma.

Machine Optimization for High study in JT-60SC

New research area #4 Divertor concept with a wide SOL at high beta

 Based on JT-60U results, a wide SOL width at midplane is taken into account for heat particle control at divertor: ~1 cm for heat flux, ~3-4 cm for particle flux

Study of Type II (Grassy) ELM with high δ

- In JT-60U, Grassy ELMy H-mode with Full CD and HH_{v2}~1.2 is achieved.
- The parameter region of the appearance of Grassy ELM is clarified.
- $\delta > \sim 0.4$ & $q_{95} > \sim 5$, $_{p} > \sim 1.6$

 In JT-60SC, it is necessary to find a way to lower q₉₅ with δ~0.35 to have Grassy ELM.

Technological Research Subjects

First wall technology

- Development of metal divertor material and first wall in terms of high heat and particle flux from the plasma, erosion, redeposition, dust, high-Z material
- Divertor material sample installation device
 - High heat and particle flux (10 MW/m², 10^{22~23} m-²s⁻¹), wall material test
 - Tritium retention

• Reduced Activation Ferritic test (as of JFT-2M AMTEX program)

- Elucidate the issue on plasma in the use of ferritic steel for in-vessel component
- Clarify effects of strong magnetized material on the plasma behaviors such as plasma build-up, mode locking, positional stability
- Application to the toroidal field ripple reduction (1% to 0.4% at the plasma edge)

JT-60 modification incorporates many advanced tokamak elements for their integration.

- JT-60 will become powerful advanced tokamak with proposed modification.

- JT-60 will become an integrated test bed of advance tokamak for ITER and DEMO.

- [1] Long sustainment of Q~1, low *, * plasma
- [2] Long sustainment of high performance full CD plasma
 - (N-NBCD+1st harmonic ECCD for current drive)
- [3] Long sustainment of high beta
 - (strong shaping, stabilizing NTM & RWM)
- [4] High and compatible divertor
- [5] Technology test such as RAF plasma test , forced cooled divertor target