Reconstruction of two-dimensional structure by using conditional techniques near the edge transport barrier in Compact Helical System

Y. Nagashima¹, K. Nagaoka², A. Fujisawa², K. Itoh², S.-I. Itoh¹, K. Ida, T. Akiyama², M. Isobe², T. Minami, S. Nishimura², A. Shimizu², C. Suzuki², C. Takahashi², Y. Yoshimura², S. Okamura², K. Matsuoka² and CHS group²

E-mail address: nagashi@riam.kyushu-u.ac.jp

¹Research Institute for Applied Mechanics, Kyushu University, Japan

²National Institute for Fusion Science, National Institutes of Natural Sciences, Japan

Attractive attention has been focused on two-dimensional structures of electrostatic potential in improved confinement studies [1]. By using conditional techniques, we reconstruct two-dimensional distributions of plasma parameters (i.e., the floating potential) near the edge transport barrier region in Compact Helical System. Edge measurements were performed by the Hybrid probe [2]. In reconstruction of DC parameter distribution, interval of H_{α} drop is used as a trigger for the conditional analysis. In reconstructed maps of the DC floating potential, a few interesting features are observed. Firstly, outside of the last closed flux surface (LCFS), the floating potential increases immediately just after the H_{α} drop (labeled as the *L-H* transition here). Next, the floating potentials decrease gradually into negative values near the LCFS. In third, fast potential spikes, preceding the *L-H* transition, are observed near or inside the LCFS and have some poloidal potential structures. The preceding fast potential spikes could play an important role in the *L-H* transition. We also observe some interesting fluctuation properties before and after the *L-H* transition [3]. In this presentation, we would provide mainly results from the conditional analysis as well as linear and nonlinear analyses of the fluctuations near the *L-H* transition.

Reference

[1] N. Kasuya and K. Itoh, Physical Review Letters 94 (2005) 195002

- [2] K. Nagaoka, et al., Plasma and Fusion Research 1 (2006) 005
- [3] Y. Nagashima, et al., Plasma and Fusion Research 1 (2006) 041

P2-08