ELM-like Oscillations Observed in the Large-Helical-Device Plasmas with/without L-H Transition

F. Watanabe², K. Toi^{1,2}, S. Ohdachi¹, S. Sakakibara¹, S. Morita¹, K. Narihara¹, Y. Narushima¹, T. Morisaki¹, C. Suzuki¹, K. Tanaka¹, T. Tokuzawa¹, K.Y. Watanabe¹, and LHD experimental group¹

Email: fmtk-w@nifs.ac.jp

¹Department of Energy Engineering and Science, Nagoya University, Nagoya 464-8603,

Japan

²National Institute for Fusion Science, Toki 509-5292, Japan

In the Large Helical Device (LHD), bursts of edge MHD modes and edge localized mode (ELM)-like oscillations are typically observed in high beta L-mode plasmas without the L-H transition as well as H-mode plasmas with edge transport barrier (ETB) produced by the transition. This is a reason why the edge region in LHD is in magnetic hill and easily suffers from destabilization of ideal/resistive interchange modes. Amplitude of ELM-like activities tends to increase with the increase in the beta value $<\beta_{dia}>$ evaluated from diamagnetic measurement, in both H-mode with ETB and high beta L-mode. In this paper, characteristics of ELM-like oscillations and relationship with edge MHD modes are investigated for H-mode and L-mode plasma in the range of $1.5 \le <\beta_{dia}> \le 3\%$.