Effect of pedestal width on the performance of ITER

T. Onjun¹, K. Tharasrisuthi¹, A. Y. Pankin², and O. Onjun³

¹ Sirindhorn International Institute of Technology, Thammasat University, Klongluang, Pathumthani, Thailand

² Department of Physics, Lehigh University, Bethlehem, Pennsylvania, USA

³ Department of Science Service, Bangkok, Thailand

E-mail: thawatchai@siit.tu.ac.th

In this work, three pedestal temperature models in Ref. [1] are selected to provide boundary conditions for carrying out self-consistent simulations of the International Thermonuclear Experimental Reactor (ITER). These pedestal temperature models are based on three different theoretical-based pedestal width scalings; magnetic and flow shear stabilization $[\Delta \propto \rho s^2]$, flow shear stabilization $[\Delta \propto (\rho R q)^{1/2}]$, and normalized poloidal pressure $[\Delta \propto R(\beta_{0,ped})^{1/2}]$. These pedestal width scalings are combined with a pedestal pressure gradient model based on ballooning mode limit to predict the pedestal temperature. The developed pedestal temperature models are used together with a core transport model, which is a combination of an anomalous transport and a necoclassical transport. An anomalous transport is calculated either using the Mixed Bohm/gyro-Bohm model or using the Multi-mode model; while a neoclassical transport is computed using the NCLASS model. At the reference design point (with 40 MW auxiliary heating: 33 MW NBI and 7 MW RF), the results of the ion pedestal temperature ($T_{i,ped}$), the ion central temperature ($T_{i,0}$), alpha power (P_{α}), and Fusion Qare summarized in the following table:

Pedestal	Mixed Bohm/gyro-Bohm model				Multi-mode model			
Width	T _{i,ped}	$T_{\rm i,0}$	P_{α}	Fusion Q	$T_{\rm i,ped}$	$T_{i,0}$	P_{α}	Fusion Q
	(keV)	(keV)	(MW)		(keV)	(keV)	(MW)	
$\Delta \propto \rho s^2$	2.6	9.7	13.3	1.7	2.7	16.2	47.8	6.0
$\Delta \propto (\rho Rq)^{1/2}$	2.4	9.2	11.2	1.4	2.5	15.8	45.0	5.6
$\Delta \propto R(\beta_{\theta,\text{ped}})^{1/2}$	2.9	10.3	15.8	2.0	2.9	15.9	51.4	6.4

In addition, the plasma parameters, like line average density and heating power, are varied to investigate the sensitivity of the performance.

[1] T. Onjun et al. 2002 Phys. Plasmas 12 5018