Comparison of the β Dependence of Confinement and Heat Transport in ASDEX Upgrade and DIII-D Experiments^{*}

L. Vermare¹, C.C. Petty², G.R. McKee³, F. Ryter¹, J.R. Ferron², R.J. Groebner², A.W. Hyatt², A.W. Leonard², T.C. Luce², and the ASDEX Upgrade and DIII-D Teams

Presenting author's e-mail: *laure.vermare@ipp.mpg.de*

¹Max-Planck Institut für Plasmaphysik, EURATOM Association, Garching, Germany ²General Atomics, P.O. Box 85608, San Diego, California 92186-5608 USA ³University of Wisconsin-Madison, Madison, Wisconsin USA

The β dependence of heat transport has been a subject of controversy for a while. For H-mode plasmas with type-I ELMs, the widely used empirical multi-machine scaling law IPB98(y,2) predicts a degradation of the global confinement increasing β as $B\tau_{th} \propto \beta^{-0.9}$ [1]. However, dedicated experiments in DIII-D [2] and JET [3] which varied β while keeping the other dimensionless parameters (ρ^* , ν^* , q, ...) and the plasma shape constant yielded no β dependence of confinement and heat transport. In contrast, similar β scaling experiments carried out recently in JT-60U [4] and ASDEX Upgrade [5] exhibited a clear β degradation in agreement with the scaling law prediction. The comparison of the experimental conditions in both DIII-D and AUG scans suggested a possible effect of the plasma shape on the resulting β scaling of transport. To investigate this possibility, new β scaling experiments have been performed in the DIII-D tokamak in the hybrid scenario. A first scan used the standard DIII-D plasma shape with $\beta_N = (2.0-2.7)$ while a second scan used a lower triangularity "AUG-like" shape with $\beta_N = (1.5-2.5)$. In both conditions, a degradation of the confinement is observed with increasing β . The present paper will present transport analysis of both β scans and a comparison between experiments performed in DIII-D and AUG tokamaks. The results of this experiment may allow us to understand why different experiments have reported different β scalings of confinement. In particular, the plasma rotation seems to be a key parameter in this kind of experiment.

- [3] D.C. McDonald, et al., Plasma Phys. Control. Fusion 46, A215 (2004).
- [4] H. Urano, et al., Nucl. Fusion 46, 781 (2006).
- [5] L. Vermare, et al., Nucl. Fusion 47, 490 (2007).

^[1] ITER Physics Basis and ITER Physics Expert Groups, Nucl. Fusion 39, 2175 (1999).

^[2] C.C. Petty, et al., Phys. Plasmas 11, 5 (2004).

^{*}Work supported in part by the US Department of Energy under DE-FC02-04ER54698 and DE-FG02-89ER53296.