

Institute of Advanced Energy Kyoto University

次世代レーザーコンプトン散乱 ガンマ線源とその利用

秋宗秀俊, 宇都宮弘章, 浦川順治, 大垣英明, 大熊春夫, 大塚孝治, 梶野敏貴, 加藤政博, 紀井俊輝, James Koga, 坂井信彦, 静間俊行, 嶋達志, 豊川弘之, 西尾勝久, 早川岳人, 羽島良一, 藤原守, 宮本修治

January 2013

京都大学エネルギー理工学研究所

次世代レーザーコンプトン散乱 ガンマ線源とその利用

京都大学 エネルギー理工学研究所 2013年1月発行

CONTENTS

本白書の作成にあたり	 1
背景と概要	 3

分析技術と産業利用

1.	放射性同位体の非破壊測定技術	 7
2.	遮蔽された化学物質の非破壊分析	 16
3.	ガンマ線 CT による産業利用	 21
4.	光子誘起陽電子消滅分析法による材料物質の深部の分析	 31
5.	磁気コンプトン散乱による磁性材料の研究	 36
6.	ガンマ線イメージング	 43

基礎科学研究 - 一主の知道の探索

7.	元素の起源の探求	49
8.	超新星ニュートリノの解明	63
9.	宇宙核時計と宇宙年代学	
10.	ガンマ線で探る原子核の構造	
11.	単色γ線を用いた核分裂研究	88
12.	重水素標的を用いたパリティ非保存の研究	
13.	円偏光ガンマ線を用いた核蛍光励起でのパリティ非保存	100
14.	デルブリュック散乱による QED の非線形効果の探索	109
15.	核共鳴蛍光での超放射(Nuclear Super-Radiance)	115
16.	ローレンツ不変性および短距離での重力法則の検証	119

次世代 LCSγ 線源

~)				
17.	高輝度 γ 線発生のためのレーザー蓄積装置	128		
18.	エネルギー回収型リニアックによる			
	次世代レーザーコンプトン散乱γ線源	142		

著者一覧

福島は津波と原子力発電所の事故のために想像を絶する被害を受けた。しか し、福島は必ず復興をとげ、さらなる発展を遂げるはずである。その復興と発 展に貢献するため、レーザー・コンプトン散乱ガンマ線ビーム施設を提案した いと考えた。幸いなことに、多くの方々の賛同を得ることができ、本白書とし て報告させていただく。この提案には次の3つの意図がある。

まず福島の産業の発展に寄与することである。ガンマ線ビームは透過力が高 く指向性が高い。このガンマ線ビームを用いれば、車のエンジンのような金属 の塊の内部構造を見ることができる。本技術は産業技術総合研究所(つくば市) の東日本大地震で閉鎖となったガンマ線発生装置で研究開発され、産業利用の 一歩手前まで進展していた。このような測定技術が自由に使えるようになれば、 福島の企業には大きな武器になるだろう。また、SPring-8 に日本を代表する自動 車メーカーが専用ビームラインを建設したように、他にないユニークな装置で あれば様々な大手メーカーの進出も期待できる。

この装置は非破壊で放射性同位体を測定する能力を有しており、福島の人々 の安心に貢献できる。ガンマ線ビームを用いた分析技術として、放射性廃棄物 の非破壊分析や、隠ぺいされた核物質の検知技術が研究されてきた。体内に入 ると危険なストロンチウムやプルトニウムは、測定まで化学処理などの手間と 時間が必要であるが、本技術ならば、計測したい物体を検査装置に置くだけで 非破壊で測定可能である。

本装置は基礎科学の発展にも貢献するはずである。世界的にみて傑出した成 果を生みだすには、他にないユニークな装置を作る必要がある。本装置は、性 能的にはヨーロッパで建設中の ELI-NP と並び世界最高性能である。ただし、ガ ンマ線の発生方式が異なるため、本装置でしかできない数々の研究提案がある。 このような装置が稼働すれば、日本国内のみならず世界から若い世代の優秀な 研究者を集め、世界に福島の名声を轟かせると信じる。

> 京都大学 エネルギー理工学研究所 教授 大垣英明

レーザーコンプトン散乱ガンマ線とは、粒子加速器で加速した高エネルギー の電子と、レーザーの光を衝突させることで生成するガンマ線である。この手 法で生成したガンマ線は、物質の透過力が X 線よりはるかに高く、ビーム状の 形状を持つという傑出した特徴がある。また、ほぼ完全な偏光が可能という物 理学上で重要な特性もある。

ガンマ線の透過力が最も高いのは、一般に 2~10 MeV (メガ電子ボルト)の エネルギー領域であり、このエネルギー領域のレーザーコンプトン散乱ガンマ 線が実用化されたのは 1990 年ごろである。定常的に利用が可能なネルギー可変 な施設は、長らくアメリカのデューク大学と、産業技術総合研究所(つくば市) の 2 か所のみであり、この 2 施設がレーザーコンプトン散乱ガンマ線の生成か ら、その利用研究について歴史的に先駆的な役割を担っていた。

デューク大学の施設は、アメリカの軍事機関が予算のかなりの部分を負担したため、研究内容のかなりの部分が未公開である。公開研究成果の中では、原子核物理学の優れた基礎研究成果がある。一方、産業技術総合研究所では、産業利用を目的とした基礎研究が進められてきた。その成果の一部は、ガンマ線 CT 技術や、放射性同位体の非破壊測定技術の開発である。X 線 CT は医療分野 で既に普通に使われている技術であるが、X 線より透過力の高いガンマ線を用 いれば、金属を透過した画像が得られる。自動車エンジンのような金属の塊の 内部を見ることができ、産業に大きな貢献すると期待されていた。残念なこと に産総研のガンマ線施設は東日本大震災で受けた被害のために閉鎖となってし まった。また、日本ではレーザーコンプトン散乱ガンマ線の研究が非常に盛ん になり、近年では SPring-8 やニュースバル放射光施設(兵庫県立大学)でもこ のタイプのガンマ線源が稼働し、原子核物理学等で成果をあげている。また、 分子科学研究所や高エネルギー加速器研究機構でもレーザーコンプトン散乱ガ ンマ線の生成技術の開発が行われている。

これらの施設は残念ながら、古い加速器技術を元に作られたものであり、産 業利用・応用研究の観点から見て、ガンマ線の輝度はかなり低い。しかし、近 年、急速に加速器科学とレーザー科学は進歩を遂げている。この2 つの科学を 融合させるこことで、新世代のレーザーコンプトン散乱ガンマ線の性能は飛躍 的に高まる。先駆的な役割を果たしたデューク大学、産業技術総合研究所の施 設では、ガンマ線の強度は 10⁵-10⁷ ガンマ線数/秒に留まっていたが、本提案で は 10¹³ ガンマ線数/秒が実現可能である。これは、従来の施設より 100 万倍もの 高輝度ガンマ線を生成できるという意味であり、従来のガンマ線が自転車だと すると新世代のガンマ線は新幹線に例えられる程、革新的な装置である。 この装置の主要な構成要素は、エネルギー回収型リニアックと呼ばれる粒子 加速器と、レーザー蓄積装置の2つから構成される。エネルギー回収型リニア ックとは、SPring-8に代表される第三世代放射光やX線自由電子レーザー(XFEL) の次の世代の光源として、世界で研究開発されている新しい種類の電子加速器 である。従来の加速器では、加速された電子は使用された後にビームダンプに 捨てられてしまう。エネルギー回収型リニアックでは、使用済の電子のエネル ギーを再び使用して、次の電子を加速する。個々の電子ビームは一度しか使用 されないため、従来より遥かに品質の高い電子ビームが得られる画期的な装置 である。このエネルギー回収型リニアックの開発は急速に進んでおり、現在、 実証機であるコンパクト ERL を高エネルギー加速器研究機構が中心となり、つ くば市内に建設中である。この施設には、福島原子力発電所の溶融燃料の非破 壊分析の技術開発のためにレーザーコンプトン散乱ガンマ線施設も併設される 予定で、2014年3月までにガンマ線の生成を実証し、実用機建設の準備を整え る予定である。

類似の施設として、EUが ELI-NP(Extreme Light Infrastructure, Nuclear Physics Facility)をルーマニアに建設中である。輝度はほぼ同じであるが、ELI-NP は通 常の線形加速器を用いるため、100~1000Hz 程度の低繰り返しのパルスビームな のに対して、本提案は 100MHz 以上の高繰り返しという特徴を有する。本白書 に述べられているように、高繰り返しのビームでしか実行できない技術・計画 も多数あり、本提案は世界的にユニークな装置になるはずである。日本は世界 的にもレーザーコンプトン散乱ガンマ線発生とその利用研究が最も盛んな国の 一つである。こられの成果を生かして、新時代のガンマ線ビーム装置と、この ガンマ線ビームを用いることで初めて可能になる技術を示したのが本白書であ る。

分析技術と産業利用	7
-----------	---

次世代 LCSγ 線源 ·······128

1 放射性同位体の非破壊測定技術

1.1 はじめに

近年、核共鳴蛍光散乱による物質の非破壊測定技術の研究が、世界の様々な ところで勢力的に進められている[1,2]。この手法には、

- 1) 数 cm の鉄などの金属や、数十 cm の水などの遮蔽物を透過して検知できる。
- 2) 元素だけでなく、同位体を測定することができる。
- 3) 天然に存在する安定な同位体だけでなく、放射性同位体なども測定できる。
- 4) 水を除く、全ての元素の同位体が測定可能である。
- 5) 元素の比率を精度よく計測することができるので、化学物質を特定することもできる。

といった傑出した特徴を有する。このような夢の技術が、高輝度レーザーコ ンプトン散乱(Laser-Compton Backscattering, LCS) ガンマ線源の開発によって現 実のものになろうとしている。

図 1.1 産総研(後述)で計測した鉛 208 の核共鳴蛍光散乱のエネルギースペク トル[3]。横軸がγ線のエネルギー、縦軸がカウント数。

1.2 測定技術の概要

この測定技術は、核共鳴蛍光散乱と呼ばれる光子(γ線)と原子核の相互作用 を用いる。原子は原子核と電子から構成されており、原子の励起状態が存在す るように、原子核にも核子(陽子や中性子)の軌道変化や原子核全体の集団運動による励起状態が存在する。原子核は、原子とは異なり、核種(陽子数と中性子数によって定義される)が異なれば、励起状態の励起エネルギー等の物理パラメーターは大きく異なる。そのため、核種毎に固有の励起状態が存在する。

ある測定対象となる核種の励起状態のエネルギーに等しいγ線を照射すると、 特に角運動量の小さい遷移状態が選択的に励起される。この励起状態はフェム ト秒からピコ秒のオーダーの非常に短い寿命で、励起エネルギーにほぼ等しい エネルギーのγ線を放出して基底状態に戻る。この現象を核共鳴蛍光(Nuclear Resonance Fluorescence, NRF)と呼び、この時放出されたγ線を核蛍光γ線と呼 ぶ。このエネルギーを測定することで、対象とする同位体の存在を知ることが できる。また、その発生量を計測することで、同位体の量も測定することが可 能である。更に、入射するγ線が直線偏極の場合には、放出するγ線に異方性が 生じる。よって、純度の高い直線偏極γ線を入射γ線に用いれば、入射γ線の偏 極軸に対して、原子核の遷移励起の状態(M1 遷移、E1 遷移)にそれぞれ特定 の散乱角度を持った核共鳴蛍光γ線が発生することになる。

エネルギー [keV]

図 1.2 核共鳴蛍光散乱による測定原理

図 1.3 測定の概念図。外部から入射した LCSy 線の核共鳴蛍光散乱 y 線を測定する。

原子核の励起レベルの図(図 1.2)からも明らかなように、NRFによって励起 できる γ 線のエネルギーは非常に狭いエネルギー幅を有することが分かる。こ のことは NRF 測定には、エネルギー幅が狭い単色の γ 線を用いるのが最も効果 的である事を示している。しかしながら、これまでに利用可能な単色エネルギ ーの γ 線は、中性子の捕獲反応 γ 線や、放射性同位元素の自然崩壊による γ 線等 にほぼ限られていた。これらの手法では、任意の希望するエネルギーの γ 線を 得る事は不可能である。これに対し、従来から用いられてきた γ 線源として制 動放射 γ 線が存在する。制動放射 γ 線は、白色のエネルギーの γ 線が圧倒的に多く れを NRF に用いると、NRF 励起に寄与しないエネルギーの γ 線が圧倒的に多く なり、これらが標的物質からの原子散乱に起因するバックグラウンドノイズと なり、NRF 計測の SN 比を著しく悪化させる。

このために、エネルギー可変かつ準単色の γ 線ビームを発生できる高エネル ギー電子とレーザー光の衝突散乱を用いた γ 線源(レーザーコンプトン散乱 γ 線)が、NRF 用の γ 線源として適していると考えられる。我が国では独立行政 法人産業技術総合研究所(産総研)にある蓄積リング TERAS を用いて、レーザ ーコンプトン散乱 γ 線の発生と応用に関する研究が行われてきた[4,5]。ここでは 300~800 MeV まで蓄積電子のエネルギーを変えることができるため、赤外から 紫外までのレーザーを使って 1~40 MeV で自由にエネルギーが可変である光子 ビームが得られる。光子ビーム強度はレーザーの出力を調整することによって 自由に調整できる。コンプトン散乱光子のエネルギーは散乱角によって決まる ため、コリメータを用いることで、エネルギー幅を狭め、任意のエネルギーとエ ネルギー幅の単色光子ビームを得ることが可能である。またレーザーの偏光状 態は、最前方散乱の場合にほぼ 100%コンプトン散乱した光子に保存されるため、 得られる γ 線がほぼ 100%偏極するという特長がある。

1.3 長寿命放射性同位体の非破壊分析

原子炉を運転すると放射性廃棄物が作られる。放射性廃棄物処理において核 分裂や中性子捕獲で生成される長寿命放射性核種の精密な定量的測定は必要不 可欠であり、非破壊検査法が望まれている。現時点では原子炉廃棄物の処理方 法として直接処分の可能性も検討され始めており、具体的な国の政策は明確に 決定されていない。しかし、従来の処理スキームでは、放射性廃棄物を化学分 離して、主要な放射性同位体は分離される。放射性同位体の半減期は長いので、 文明の歴史と同スケールの長期的な視野から処理レベルを決定する必要がある。 それぞれの放射性同位体の寿命、流失のしやすさ、人体や環境への影響を加味 して適切なレベルの処理が行う必要がある。低レベルの放射性廃棄物は、寿命 が短い方からトレンチ処分、ピット処分、余裕深度処分になり、基本的に地層 処分と比較すると浅いレベルに保管することになる。

表 1.1 提案された処分レベルの分類に必要な測定すべき核種。oが付いた核種 が測定対象核種である。注1、Co-60の親核の Fe-60の半減期は150万年であり 長期に亘り供給される。注2、35keVの γ 線を放出するが内部でほとんど吸収さ れるので実質的に β 崩壊核種である。

			トレンチ	ピット処	余裕深
	崩壊様式	半減期	処分	分	度処分
C-14	β崩壊	5739 年		0	0
CI-36	β崩壊	30 万年			0
Co-60	γ崩壊	5.3 年(注1)	0	0	
Ni-63	β崩壊	101 年		0	
Sr-90	β崩壊	28.8 年	0	0	
Tc-99	β崩壊	21 万年		0	0
I-129	γ崩壊(注 2)	1570 万年			0
Cs-137	γ崩壊	30.1 年	0	0	
U-238	α崩壊	44.7 億年			0
Am-241	α崩壊	432 年		0	

低レベルの放射性廃棄物の処分において、処理レベルの決定には、特定の放 射性同位体の濃度を計測する必要がある。平成19年2月に原子力安全委員会の 放射性廃棄物・廃止措置専門部会から、「低レベル放射性固体廃棄物の埋設処分 に係る放射能濃度上限値について」(案)が報告された。ここでは、トレンチ処 分、ピット処分、余裕深度処分の分類に必要な核種ごとの放射能濃度が提唱さ れている。「低レベル放射性固体廃棄物の埋設処分に係る放射能濃度上限値につ いて」(案)では、表1.1に示す核種が測定対象である。

ERL-LCSγ線装置を用いた場合には、これらの放射性同位体を非破壊で測定可 能である。試算では、下記の放射性同位体のうち Co-60 と Cs-137 を除いて処理 区分の限界より 1~3 桁低い値まで測定可能である。下記のリストにおいて、 Co-60 と Cs-137 は比放射能が高いγ崩壊核種であり、自然崩壊によるγ線の測 定が十分可能である。

様々な起源を持つ核廃棄物には多種多様な長寿命放射性同位体が存在する。 レーザーコンプトン散乱 γ線による核共鳴蛍光散乱による測定方法の長所の一 つは、放射性同位体でも測定できる点である。表 1.1 に示したように重要な核種 のいくつかは β 崩壊核種や α 崩壊核種であり、化学分離していない状態では、 崩壊による放射性の計測は困難であり検知が非常に難しい。しかも、人体に入った場合には放射線によるダメージを与えるという点で、非常にやっかいな同 位体である。

このような核種の中でも地下の処理施設に侵入した地下水によって放射性同 位体が流出した場合、体内摂取による被曝の影響が最も大きいと考えられてい るのが C-14 (炭素 14) である (電気事業連合会・核燃料サイクル開発機構、「TRU 廃棄物処分技術検討書」2005 年)。C-14 は 5730 年の長い半減期を持ち、炭素で あるため人体に吸収されやすい。そのため、TRU 廃棄物処理においても、C-14 濃度の高い廃棄物(例えば、使用済核燃料の切断によって発生するハル・エン ドピース等) は、最も深度が深い地層処分にされる予定である。そのため、信 頼性が高く非破壊で検査できる C-14 の濃度測定技術が必要不可欠である。しか しながら、C-14 はβ崩壊核種であり自然崩壊の測定は著しく困難である。また、 原子番号が小さいため特性 X 線の分析等も識別が困難である。透過力の高い中 性子も C-14 に対しては無力である。このように、現在 C-14 の有効な非破壊測 定法は存在せず、レーザーコンプトン散乱ガンマ線による非破壊測定法は有効 な手段となるだろう。

1.4 プルトニウムの非破壊探知

2001年9月11日のアメリカでの同時多発テロを契機に、世界の状況は一変した。ビン・ラディンが射殺されても依然としてテロの脅威は続いており、アフガニスタンをはじめその状況は改善していない。そのため、テロを未然に防ぐためのセキュリティー装置の開発が重要な課題になっている。このような状況のもとで、数kg単位の爆発物を含む有害物質の非破壊検査法の開発が世界的な研究課題の一つとなっている。例えば、港湾における輸出入されるコンテナや、空港、港湾、発電所等に出入りするトラックの荷台の非破壊検査が具体的な課題として挙げられる。現在、低エネルギーX線による透過型、後方散乱による検査装置が実用化されているが、このような装置では厳重に隠蔽された物質の検知は困難であり、また物質の種類(化学物質、核物質)の同定に対しては新しい技術の開発が望まれている。

レーザーコンプトン散乱 γ 線による核共鳴蛍光を利用した検知法は、数 MeV の γ 線を利用し、数 cm の鉄、ステンレス、数十 cm のコンクリート等を透過し て、任意の同位体の存在を非破壊分析できる方法と考えられ、現在、この原理 を利用した検出システムの構築を進めている。

NRF による同位体測定法に関する研究はまだ歴史が浅く、まずマサチューセ ッツ工科大において、制動放射による γ 線を用いて開始された[4]。これは現在、 Passport Systems において、研究開発が進められている。本装置は重要拠点のゲートや港湾において、トラック・海上コンテナをトラックごと計測する装置である。中心部に制動放射γ線発生装置と検出装置が設置されている。

一方、ローレンスリバモア研究所では、トラック等に隠蔽された 235U の測定 法として、準単色のトムソン散乱γ線を光源として用いた測定法が提案された[1]。 この実証のために、同研究所では線形加速器によるレーザーコンプトン散乱 γ 線装置(Thomson-Radiated Extreme X-ray Source、T-REX)の開発が進められてい る。

また日本国内でも、輝度は高くないものの小型レーザーコンプトン散乱 γ 線 発生装置による核物質の探知システムの研究が行われている[5]。

1.5 隠匿された物質の検出の原理実証

核物質の非破壊探知の必要が高まると同時に、隠ぺいされた核物質のレーザ ーコンプトン散乱ガンマ線を用いた原理実証が産業技術総合研究所のレーザー コンプトン散乱γ線装置を用いて行われた[6]。実験体系の概略を図 1.4 に示す。 エネルギー570 MeV の電子ビームに対して、波長 1064 nm のレーザーを照射し、 5.7 MeV のレーザーコンプトン散乱γ線を発生させた。γ線ビームは直径約3 mm にコリメートして測定室に導き、サンプルに照射した。サンプルは 2 cm×2 cm×5 cm の天然の鉛からなるブロックであり、これを 5 cm×5 cm の鉄箱に隠匿 した。鉄箱の厚さは 15 mm である(図 1.5 左)。測定対象にした NRFγ線は、天 然鉛に含まれる 208Pb の 5.512 MeV にある比較的強い共鳴準位[7]を励起した。

試料から散乱された NRFγ 線のエネルギースペクトルを高純度ゲルマニウム (Ge)半導体検出器で測定したところ、208Pb から放出されたエネルギー5.512 MeV の NRFγ線が観測された。そこで、鉄ブロック中に隠された鉛ブロックの 位置を探るために、γ線ビームに対してサンプルを動かし、NRFγ線エネルギー スペクトルを数点測定したところ、鉛が存在する位置では、208Pb の 5.512 keV の NRFγ線が検出されたのに対し、208Pb が存在しない場合は、NRFγ線は検出 されなかった。測定位置と NRFγ線強度の関係を調べることによって、鉄ブロッ ク中に隠蔽された鉛の位置と形状を知ることができた(図 1.5 右)。

図 1.4 産業技術総合研究所で行われた実験配置模式図

1.6 疑似3次元イメージングの原理実証

産総研での基礎的実験において、鉄で隠ぺいされた四角柱の鉛ブロックの検 知を行うことができた。この測定では、縦方向の隠ぺいされた鉛の量(長さ) を計測しただけであり、謂わば1次元の測定である。原理的には、より複雑な 形状の測定が可能であり、図1.6のような三角柱の形状の鉛ブロックを厚さ1cm の鉄の箱に入れて、形状の測定の原理実証実験が産総研で行われた[7]。実験の 概要は1.5章に述べた実験とほぼ同じなので、結果だけを記す。図1.7(左)の ように、鉛の散乱γ線の強度から厚みを測定した結果は実際の形状とほぼ一致 した。図1.7(右)のように、2次元スキャンをして形状を測定した結果は、分 解能が荒いが形状を再現した。このように、様々な角度からγ線を入射して測 定することで、疑似的に3次元のイメージングが可能である。なお、輝度が高 いレーザーコンプトン散乱γ線源があれば、本物のCT型3次元イメージングも 可能である。

図 1.6 実験の模式図とサンプルの形状

図 1.7 測定結果。(左)厚みの計測(右)形状の計測

核共鳴蛍光散乱を用いた測定法の長所の一つは、元素ではなく同位体を測定 できる点である。例えば、ウランには、原子炉で核分裂の主役を務めるウラン 235 と、比較的安定なウラン 238 が存在する。このような同位体を識別し測定す ることが可能である。その原理実証実験として、産総研のレーザーコンプトン 散乱ガンマ線装置を用いて、厚さ 1cm の鉄で隠ぺいされた鉛の同位体、鉛 206 と鉛 208 の測定実験が行われた[8]。図 1.8 に試料の形状と測定結果を示す。中央 部部分に鉛 206 を濃縮した同位体濃縮試料を配置し、その両側に天然の鉛を配 置した。天然の鉛には、鉛 208 が 52%含まれるので、鉛 208 を計測した。中央 部分では、鉛 206 が、その両側では鉛 208 が計測された。

図 1.8 鉛の同位体、鉛 206 と鉛 208 の識別実験

1.7 将来の LCS ガンマ線とレーザー技術

産業技術総合研究所のレーザーコンプトン散乱 γ 線装置を用いて、厚さ 1~ 1.5cm で隠ぺいされた試料の測定の様々な実証実験が行われた。金属を透過でき る高い透過力、同位体を識別できる能力など、本技術の長所が実証されている。 残念なことに、東日本大震災で受けた損害のために閉鎖されてしまった。しか し、産総研で行われた実証実験は、高輝度のレーザーコンプトン散乱ガンマ線 が実現すれば、様々な産業利用が可能なことを示している。また、原理的に安 定な同位体だけでなく、放射性同位体も測定可能な点は重要である。

参考文献

[1] J. Pruet, D. P. McNabb, C.A. Hagmann, F.V. Hartemann, and C.P.J. Barty, J. Appl. Phys. 99, 123102 (2006).

[2] R. Hajima, T. Hayakawa, N. Kikuzawa, and E. Minehara, Jour. Nucl. Sci. Technol. 45, 441(2008).

[3] T. Shizuma, Phys. Rev. C 78, 061303(R) (2008).

[4] W. Bertozzi, R. Ledoux, Nucl. Inst. Meth. B 241, 820 (2005)

[5] H. Ohgaki, T. Kii, K. Masuda, T. Misawa, C.H. Pyeon, R. Hajima, T. Hayakawa, T. Shizuma, K. Kawase, M. Kando, H. Toyokawa, Proceedings of IEEE HST2010, pp.525-529(2010).

[6] N. Kikuzawa, R. Hajima, N. Nishimori, E. Minehara, T. Hayakawa, T. Shizuma, H. Toyokawa and H. Ohgaki, Appl. Phys. Exp. 2 (2009)036502-1.

[7] H. Toyokawa, et al. Jpn. J. Appl. Phys. 50, 100209 (2011)

[8] T. Shizuma et al. Rev. Sci. Istr. 83, 015103 (2012).

2 遮蔽された化学物質の非破壊分析

要旨

隠蔽された爆発物などの危険な化学物質の検出は、テロ行為から安心安全な 社会を守るために重要な技術である。これに対し、強力なレーザーコンプトン ガンマ線を照射し、核蛍光ガンマ線を検出することで、非破壊での化学物質検 出が容易になる。本稿ではそのための基礎的な実験研究の紹介を行う。

2.1 はじめに

爆発物は一般に化合物であり複数の元素から構成されている。そこで複数の 元素(原子核)を同時に計測することで化合物を検知する方法が考案された[1]。 爆発物は多量の窒素、炭素、酸素を含んでおり、特に窒素は他の一般的な有機 物より含有量が多いために、窒素と炭素(あるいは、窒素と酸素)の存在比を 同時に計測することで爆発物の検知が可能である。また、その元素の比を精密 に計測することで爆発物の種類の同定も可能である。残念ながら炭素/窒素の比 だけでは物質の同定に限界がある。そこで、波長の異なるレーザー(この場合 は2波長)の導入により、窒素/炭素の比と窒素/酸素の比を同時に計測する手法 が考えられる。図 2.1 に示すように TNT 火薬、ニトログリセリン、過酸化アセ トン等の爆発物は、種類によって炭素/窒素と酸素/窒素の組み合わせが大きく異 なるため、十分に爆発物を同定できる。

しかしながら、レーザーコンプトン散乱ガンマ線を用いた核共鳴蛍光散乱 (NRF)による同位体の検出技術は、任意の単一核種を計測することを想定し た検出法であり、異なる原子核の励起準位エネルギーは一般に異なるため、エ ネルギーの幅が狭いレーザーコンプトン散乱ガンマ線では複数の元素(核種) を同時に計測することができない。

そこで2つの異なるエネルギーのレーザーコンプトン散乱ガンマ線を用いて、 炭素/窒素の元素比と、酸素/窒素の元素比を同時に計測することで、数 cm の厚 さの金属等で遮蔽された内部にある化学物質の非破壊分析を行う方法が提案さ れた。これまでに、隠ぺいされた化学物質の元素の比を計測することと、同時 に 2 つのエネルギーのレーザーコンプトン散乱ガンマ線を生成することが実証 されている。更に強力な ERL-LCS ガンマ線を用いれば、様々な種類の化学物質 の非破壊測定が可能になるだろう。

図 2.1 主要な爆発物の酸素/窒素と、炭素/窒素を2次元上でプロットしたもの

2.2 実験成果

産業技術総合研究所(産総研)のレーザーコンプトン散乱ガンマ線施設で、 複数元素の同時計測の原理実証実験が行われた[1]。実験では、意図的に広いエ ネルギー幅を有するレーザー逆コンプトン散乱 γ 線を生成し、複数の原子核を 同時に計測することで化合物を検知することを試みた。爆発物の模擬物質とし て炭素と窒素を多く含むメラミンを用いて実証実験を行った。メラミンは、特 に多量の窒素を含有する点で爆発物の一般的な特性と類似しているため、この 種の研究において広く爆発物の模擬物質として用いられている。

実験には、産総研のレーザーコンプトン散乱 γ 線を用いた。炭素と窒素の元素比を計測するにあたって、実際にはそれぞれの同位体である ¹²C と ¹⁴N の量を計測した。¹²C と ¹⁴N には、それぞれ 4.439 MeV と 4.915 MeV のエネルギーの励起状態が存在する(図 2.2)。そのため、同時計測には、4~5 MeV のエネルギー領域を有するガンマ線が必要である。そこで、530 MeV の電子と 1064 nm の波長のレーザーを衝突させて最大エネルギーが 5 MeV のガンマ線を発生させた。

爆発物が隠蔽された状態を模擬するために、メラミンの前面に厚さ15 mmの 鉄と厚さ4 mmの鉛を同時に設置した。レーザーコンプトン散乱γ線は鉄と鉛を 透過した後に、対象試料に到着し、試料中に含まれる ¹²C 及び ¹⁴N と核蛍光散乱 を起こし、NRF γ 線を放出する。これを Ge 半導体検出器で計測したエネルギー スペクトルが図 2.3 である。 ¹²C と ¹⁴N の NRF γ 線のピークが明瞭に測定されて いることが分かる。このピークの存在は、対象試料中に ¹²C と ¹⁴N が存在してい ることを示し、また、このピーク面積から含有量を評価することができる。

図 2.3 窒素と炭素の核共鳴蛍光散乱のピーク

対象試料中の炭素と窒素の比を、ガンマ線のエネルギースペクトルのピーク 面積から検出器の検出効率等の補正した上で求められた。測定結果は炭素/窒素 =0.39±0.12 であり、メラミンの炭素/窒素=0.5 と誤差の範囲で一致し、この計測 法の有効性が実証された。この手法では、2 つの同位体の比を計測するため系統 誤差は小さく、上記の誤差はほとんど統計誤差である。

図 2.4 2 色レーザーコンプトン散乱ガンマ線発生の模式図

爆発物の検知には、炭素、窒素、酸素を同時に計測する必要がある。図 2.1 の炭素、窒素、酸素の励起状態のエネルギーを検討すると、約5 MeV のガンマ 線で既に実験されたように、炭素と窒素を同時に計測できる。また、約7 MeV のガンマ線を生成すれば、窒素と酸素を同時に計測することができる。それぞ れの比は、系統誤差が小さく精度良く計測できるので、2 つの値(炭素/窒素比 と、酸素/窒素比)を同時に高精度で測定することで、組成を知ることができる。 そのためには、約7 MeV と 5 MeV のレーザーコンプトン散乱ガンマ線を同時に 生成することが必要である。ガンマ線のエネルギーを変更するには、

- i) 電子ビームのエネルギーを変更する、
- ii) レーザーの波長(エネルギー)を変更する、
- iii) 電子とレーザーの散乱角度を変更する、

の3 種類の方法が知られている。このうち、蓄積リングの性質上、同時に異なるエネルギーの電子を蓄積することは原理的に不可能である。異なる2 つの散 乱角度を用いることは可能であるが、正面衝突の場合と比較して、発生するγ 線の輝度が下がるというデメリットを有する。そのため、同時に異なる波長の レーザーを照射し、異なるエネルギーのレーザーコンプトン散乱ガンマ線を同 時に生成する方法が既存の蓄積リングを用いる場合には最も現実的である。

2.3 2 色レーザーコンプトン散乱ガンマ線の発生実験

2種類のエネルギーのレーザーコンプトン散乱(LCS)ガンマ線発生に関する 最初の実証実験が、産業技術総合研究所で行われた[2]。電子ビームには 640 MeV のエネルギーのビームが用いられた。約7.5 MeV と5 MeV のエネルギーのガン マ線を生成するために、1064 nm の波長の Nd: YVO4 レーザーと 1540 nm の波長 の Er ファイバーレーザーが用いられた(図 2.4)。レーザーの偏光は前者が直線 偏光で、後者がランダムであった。図 2.5 が 8 インチ×12 インチの Nal シンチレ ーターで計測した LCS ガンマ線のエネルギースペクトルである。この図より、2 色の LCS ガンマ線が生成されていることが分かる。5 MeV の LCS ガンマ線のピ ークが、窒素と炭素の核共鳴蛍光散乱の励起エネルギーを、また 7 MeV のガン マ線ピークが窒素と酸素の励起エネルギーをカバーできることが分かる。

図 2.5 爆発物の種類を探知するために、同時に異なる 2 種類のエネルギーの LCSy 線を同時に生成したときのエネルギースペクトル。酸素/炭素、炭素/炭素 の比を同時に計測できる。

一方、ERL を用いた LCS ガンマ線発生装置では、ガンマ線の強度が十分高い のでレーザー蓄積装置内で、若干の角度をつけて電子とレーザーの散乱を起し、 異なるエネルギーのガンマ線を発生する方法も可能になる。この場合、レーザ ー蓄積装置を 2 個用意して、片方の角度を回転させることで、2つの異なるエ ネルギーのガンマ線を生成する方法が考えられる。

既に、これまでの実証試験で示されたように、従来の X 線検査では不可能な 厚さ数 cm の鉄で隠蔽されている危険化学物質が、本手法では非破壊で測定可能 である。更に強力な ERL-LCS ガンマ線の実現により、現実的な検出手法として 安全安心な社会の構築に貢献可能である。

参考文献

[1] T. Hayakawa, et al., Rev. Sci. Instr. 80, 045110 (2009).

[2] T. Toyokawa, et al., Nucl. Instr. Method. Phys. Res. A652, 21 (2011).

3 ガンマ線 CT による産業利用

要旨

X線 CT は対象物の内部を調べる優れた技術の一つであり、医療分野で広く 使われている。透過力の高いガンマ線を用いれば、金属やコンクリートの内 部のガンマ線 CT 撮影が可能である。レーザーコンプトン散乱ガンマ線は、単 色性が高く空間的な指向性が高いという特徴を有するため、高い密度分解能 や空間分解能が得られる。既に、産総研レーザーコンプトン散乱ガンマ線発 生装置を用いてガンマ線 CT の基礎開発は行われており、コンクリート角柱中 の鉄筋などを用いた試験行なわれている。これらの最新技術開拓の一端を紹 介する。

3.1 はじめに

工業製品の非破壊検査に X 線 Computerized Tomography (CT) 装置が用いら れている。大型工業製品の非破壊検査には、10 MeV 以下の加速エネルギーを 持つ電子線形加速器(リニアック)を用いた大型 X線 CT 装置が用いられる。 日本では(株) IHI や(株)日立製作所などが製品化を行っており自動車メー カーや税関などに納入している。加速電圧が数 kV~数+ kV 程度の小型 X 線 CT 装置は半導体、樹脂成型、電子部品などにおいて使用され、数 µm 以下の 高い空間分解能を達成している製品が多く市場で入手できる。

3.2 レーザーコンプトン散乱の原理

レーザーコンプトン散乱(LCS)は通常のコンプトン散乱と同じであるが、 電子のエネルギーが高いこと、光子としてレーザーを用いることが特長であ る(図 3.1)[1]。1940年代に、宇宙線に観測される MeV 領域の高エネルギー ガンマ線の発生源として LCS が注目され、発生機構に関する理論研究が進展 し、その後電子加速器を用いて実験室で LCS ガンマ線が発生された[2]。電子 エネルギー E_e 、レーザー光子のエネルギー E_L として、LCS 光子のエネルギ ーE は衝突角度 θ_I 、散乱角度 θ_2 を用いて(1)式で表される。

$$E_{\gamma} = \frac{E_{L}(1 - \beta \cos[\theta_{1}])}{1 - \beta \cos[\theta_{2}] + \frac{E_{L}(1 - \beta \cos[\theta_{2} - \theta_{1}])}{E_{e}}}$$
(1)
where $\beta = \sqrt{1 - \gamma^{2}}, \ \gamma = \frac{E_{e}}{0.511}$

産業技術総合研究所(産総研)では、小型電子蓄積リング TERAS を用いて LCS 光子ビームを生成している[3,4]。TERAS の周長は 31.45 m、直径約 10 m である。概観図を図 3.2 に示す。波長 1064 nm の Nd:YVO4 レーザー、および その 2、3、および 4 倍高調波を用いることで、光子エネルギーを約 10 MeV 単位で大まかに変化させ、かつ電子蓄積リングの偏向電磁石や集束系電磁石の磁場強度を微調整して電子エネルギーを数 keV 程度で調整することで、 LCS 光子ビームのエネルギーを連続可変としている。便宜上、本稿では MeV 領域の光子をガンマ線と呼称する。

上記式 (1) において $E_r \ge \theta_2$ に1対1の関係があることから、散乱角を小さ く制限することで光子エネルギー広がりを小さく(準単色化)できる。LCS 光子ビームの発散角は電子エネルギーの二乗に反比例するため、電子エネル ギーを高くすると良質のビームが得られる。数 100 MeV の電子を用いて発生 した LCS 光子は数 100 μ rad 程度の広がりとなり高い指向性を持つ。散乱光子 にレーザーの偏光がそのまま保存されるため、高い偏極度の光子が得られる。

産総研では LCS 光子ビームの強度を高くするために正面衝突のスキームを 用いている[5,6]。LCS 光子のパルス幅は電子バンチ長(数 100 nsec~1µsec 程 度)とレーザーのパルス幅によって決まり、産総研では概ね 1µsec 程度であ る。マクロパルスの繰り返し周波数はレーザーの繰り返し周波数によって決 まり、1~40 kHz である。10 MeV 以下では連続波(172 MHz)も発生できる。

図 3.1 レーザーコンプトン散乱の kinematics

厚さ 200 mm、内径数 mm の鉛コリメータ(0.5 ~5 mm で選択)に LCS 光 子ビームを通してエネルギーの揃った細いビームとする。直径 1 mm のコリメ ータを通過した LCS 光子ビームのエネルギースペクトルを図 3.3 に示す[7]。エ ネルギー幅は約 3%である。10 MeV の電子を金属ターゲット(銅)に照射して 得られた制動放射 X 線エネルギースペクトル(シミュレーション)を比較のた め同図中に示す[8]。鉄、アルミニウム、銅などの金属の線減弱係数は数 MeV において最小となるので、数 MeV の光子(ガンマ線領域)は金属を最も透過 する。産総研の LCS 光子ビームはこの領域のガンマ線を発生するのに最も適し ていることから、金属構造体の検査に非常に有効である。

図 3.2 産総研電子蓄積リング TERAS の概観図

図 3.3 High-resolution high-energy photon spectrometer[7]によって測定した産総 研 LCS 光子ビームのエネルギースペクトル(実線)。10 MeV の電子を銅ター ゲットに照射して発生させた制動 X 線エネルギースペクトル(モンテカルロコ ード EGS5 [8])を破線で示す。

3.3 LCS ガンマ線ビームを用いた非破壊イメージング

LCS ガンマ線には以下の特長がある:

- 透過力が高い
- 準単色である
- 高い指向性を持つ。

ガンマ線の透過力が高いことは大きな物の検査に適している。準単色である ことは、物質の密度を正確に測定できる、物質の識別が可能である等の特長 を有する。高い指向性を持つことは、正確な線源弱係数の測定と高い空間分解能を有する。産総研では MeV 領域(数 MeV~数 10 MeV)の LCS 光子ビームを用いて、非破壊イメージングに関する研究を行った[9,10]。CT システムの空間分解能と密度分解能はそれぞれ 0.9 mm および 3%程度である[11]。LCS ガンマ線を用いた非破壊検査 CT 装置は以下のような利点を持つ:

- 高い密度分解能が得られる、
- 高い空間分解能が得られる、
- 大きな製品を検査できる。

LCS ガンマ線、およびそれを用いた CT 装置の概略図を図 3.4 に示す。本 CT 装置では 2 つのコリメータを用いてビームの空間プロファイルを整形する とともにエネルギーを準単色化している。CT としては細いビームと一つの検 出器を使う第一世代 CT を用いた。ガンマ線強度は放射線遮蔽壁後ろの測定室 に配置されたヨウ化ナトリウムシンチレーション結晶(NaI(Tl))によって測 定した。

本 CT 装置を用いて測定したコンクリート角柱(10 cm×10 cm)の CT 像を図 3.5 に示す[11]。左はサンプル写真、右は表面から 5 mm 下の CT 断層図である。 CT 像では最小き裂幅 0.2 mm の観察とともに、モルタルに分散した粗骨材が明 瞭に観測された。測定は直径 1mm の LCS ガンマ線ビームを用い、CT ステージ を速度 1.3 mm/s で滑らかに水平移動しつつ透過ガンマ線強度を 0.25 mm ピッ チで測定した。投影方向は 360 度を 200 分割し、測定には 5 時間/断面を要し た。図 3.6 は鉄筋を配置したコンクリートブロックの CT 像である。鉄筋の配 置、および鉄筋の断面形状が明瞭に観察できる。

約0.2 mm幅のき裂まで確認 図 3.5 コンクリート供試体の写真(左)と表面より 5 mm 下の断面の CT 像[11]

図 3.6 鉄筋を配置したコンクリートブロック(10 cm×10 cm)の写真(左)と 上面より 20 mm 下面における CT 断層象(右)

図 3.7 はコンクリート中に鉄鉱石を分散させた遮蔽用コンクリートブロック 供試体の写真と CT 像である[12]。供試体寸法は約 10 cm×10 cm×20 cm である。 測定時間は 7 時間/断面であった。モルタルと鉄鉱石、クラック、補強用に 入っていた鉄筋およびその腐食(中空になっている様子)が詳細に観察でき る。鉄鉱石には密度の高いものと低いもの数種類が入っていることが分かっ た。図 3.7 に示した CT 画像における画像の濃淡すなわち CT 値の頻度分布を 図 3.8 に示す。モルタル、鉄鉱石、鉄筋のそれぞれが弁別できていることが分 かる。CT 値が物質に固有のものである場合は物質識別の能力を示すこととな る。

 (Sample size about 100 mm × 100 mm)
 Mortar
 Crack

 図 3.7 鉄鉱石を分散させたコンクリート供試体の写真(左)と、

 表面より 20 mm 下の断面の CT 像[11]

図 3.9 は比較的大きな鉄筋コンクリート供試体の CT 象である[13]。ステップ 形状であり、寸法は各辺が 35 cm、38 cm、50 cm である。測定は直径 5 mm の LCS ガンマ線ビームを用いた。コンクリート製ステップの階段部分と底辺にあ たる部分にそれぞれ鉄筋を紙面に垂直、および平行に配置した。鉄筋の位置と 粗骨材の分布が明瞭に見える。

橋脚の鉄筋コンクリート柱の検査が本手法で可能であることを示すため、厚 さ2mの供試体を製作し、CT撮影を行った。実験配置とCT像を図 3.10に示 す。図 3.9の測定に使用した供試体の前後に 1.5mのコンクリート層を配置し て、供試体厚さと合わせて全体長さを約2mとして橋脚を模擬した。LCSガ ンマ線強度が不足しているためにノイズが多い画像であるが、CT像において サンプル形状と配筋の様子を確認できた。今後、LCSガンマ線の強度を高く することで橋脚検査が可能であることが分かった。

図 3.8 鉄鉱石を分散させたコンクリート供試体の CT 値の分布[11]

図 3.9 大きなコンクリート供試体の写真(左)と CT 像[12] 寸法は各辺がそれぞれ 35 cm、38 cm、50 cm。白く見えるのが鉄筋である

図 3.10 直径 2 m の橋脚を模擬した CT 実験配置(左)、 および中心部付近の構造の CT 像(右)

本 CT システムの密度分解能(低コントラスト分解能)を評価するため、 様々な物質(水、重水、マグネシウム、シリコン、水晶、アルミニウム、ク ロム、ステンレス(SUS304)、フッ化バリウム、銅、BGO、タンタル、タン グステン)の CT 像を取得した(図 3.11)。左がサンプルの写真、中央がサイ ノグラム、右側がサイノグラムから再構成した CT 像である。CT 像には物質 の線減弱係数によって青(空気)~赤(タンタル)に色分けしてある。CT 値 で 1~20 以上までの広いダイナミックレンジにおいて、画像の濃淡と CT 値の 間に極めて良好な線形性が得られている。

Sample photograph

2-D image of $\mu(x,\theta)$ 2-D image of $\mu(x,y)$ (Sinogram)

(CT image)

図 3.11 様々な物質(水、重水、マグネシウム、シリコン、水晶、アルミニウ ム、クロム、ステンレス(SUS304)、フッ化バリウム、銅、BGO、タンタル、 タングステン)の写真(左)、サイノグラム(中央)と CT 象(右)

3.4 LCS ガンマ線の CT への応用

再生冷却溝構造を有する液体ロケット燃焼器内壁は、片面が高温燃焼ガス (約 3000℃)に、もう片面が液体水素(約-253℃)に曝され、極めて大きな 温度勾配に耐えなければならず、繰り返し燃焼により塑性変形を生じ、残留 ひずみが蓄積される。これら残留ひずみを定量評価することは、燃焼器の損 傷および寿命評価を行う上で重要である。これまで、燃焼器内壁の破壊モー ドおよび寿命評価に関して様々な研究が行われてきた[15-19]。産総研 LCS ガ ンマ線ビーム CT 装置を用いて、冷却溝周辺の CT 像を取得することで冷却溝 内部形状を観測することを試みた。

図 3.13 に再生冷却燃焼器構造の概略を示す。冷却材が流れる溝を掘った銅 合金の表面をエッチングによって蓋をして、トンネル型の冷却溝を作る。さ らに外側に Inconel 合金製の外筒を設けることで熱応力による変形を抑えてい る。CT 撮影用に、実機のスケールモデル供試体を用意し、最大エネルギー10 MeV の LCS ガンマ線を用いて CT 測定を行った(図 3.14)。供試体を 2 mm/s で並進させ、0.25 mm 毎にガンマ線透過率を測定した。ステージ移動範囲、回 転ピッチはそれぞれ 90 mm、2度(180 投影)である。測定時間は 1 断面当た り 3 時間であった。CT 画像再構成はフィルタ逆投影法(FBP)によって行っ た。液体水素の流れる冷却溝が鮮明に観察できた。

図 3.14 供試体の LCS-ガンマ線 CT 像

謝辞

コンクリート供試体は東京大学生産技術研究所の金田尚志氏(現、(株)日 鐵テクノリサーチ)より提供を受けている。加速器を使った実験では産総研 電子加速器チームの協力を頂いている。

参考文献

- [1] R. H. Milburn Phys. Rev. Lett. 10 (1963) 75.
- [2] L. Federici et al., Nuovo Cim. B59 (1980) 247.
- [3] T. Tomimasu, T. Noguchi, S. Sugiyama, T. Yamazaki, T. Mikado, and M. Chiwaki, *IEEE Trans. Nucl. Sci.* 30 (1983) 3133.
- [4] T. Yamazaki, T. Noguchi, S. Sugiyama, T. Mikado, M. Chiwaki, and T. Tomimasu; IEEE Trans. Nucl. Sci., 32 (1985) 3406.
- [5] H. Ohgaki, H. Toyokawa, K. Kudo, N. Takeda, and T. Yamazaki, Nucl. Instumr. Methods Phys. Res. A455 (2000) 54.
- [6] H. Toyokawa, et al., Nucl. Instrum. and Methods in Phys. Res A608 (2009) S41.
- [7] H. Harada et al., J. Nucl. Sci. Technol. 38 (2001) 465.
- [8] H. Hirayama, Y. Namito, A.F. Bielajew, S.J. Wilderman and W.R. Nelson, "The EGS5 Code System, by SLAC-R-730 (2005) and KEK Report 2005-8", 2005.
- [9] H. Toyokawa, T. Mikado, K. Yamada and H. Ohgaki, *Rev. Sci. Iunstrum.* 73 (2002) 3358.
- [10] H. Toyokawa, Nucl. Instrum. Methods Phys. Res. A545 (2005) 469.
- [11]H. Toyokawa, H. Kanada, R. Kuroda, T. Kaihori, K. Yamada and T. Uomoto, Proceedings of the 5th World Congress on Industrial Process Tomography, pp.503-510, 2007.
- [12]H. Toyokawa et al., IEEE Trans. Nucl. Sci. 55 (2008) 3571.
- [13]H. Toyokawa et al., *Conference records of 2007 IEEE Symposium on Nuclear Science and Medical Imaging Conference*, N20-354, pp. 1598-1602, 2007.
- [14] H. Toyokawa, T. Hirade, R. Kuroda, R. Suzuki and T. Ohdaira, "Application of High-energy Photon Beam to Industrial Imaging based on Positron Annihilation", *Proceedings of The Eighth International Topical Meeting on Nuclear Applications* and Utilization of Accelerators (AccApp07), pp. 331-335, 2008.
- [15] R.T. Cook, E.E. Fryk and J.F. Newell; NASA CR-168215(1983).
- [16] M. Murphy, R.E. Anderson, D.C Rousar and J.A. Van Kleeck; NASA CP-2437(1986).
- [17] Ned P. Hannum and Harold G. Price, Jr.; NASA TP 1834(1981).
- [18]Richard J. Quentmeyer; AIAA-90-2116(1990).
- [19] M.L. Badlani, J.S. Porowski, W. J. O'Donnell and D.B. Peterson; NASA CR-168261(1983).

4. 光子誘起陽電子消滅分析法による材料物質の深部の分析

要旨

陽電子を材料物質に打ち込み電子との対消滅によって発生するガンマ線を測 定する陽電子分析法は、材料物質の表面における格子欠陥や不純物析出を研究 する手段として広く使われている。しかし、表面から 1mm 程度までしか計測 できないという問題があった。この問題を解決するために、高輝度の単色ガン マ線を材料に照射し、物質の深部で対生成で陽電子を創り出すことで分析を行 う光子誘起陽電子消滅分析法が提案されている。従来は不可能であった材料深 部の分析が可能となる。産業技術総合研究所でこれまでに行われた研究成果を 紹介し、新しい技術発展を展望する。

4.1 光子誘起陽電子消滅法による材料深部の非破壊イメージング

ステンレス鋼のように堅牢な材料でも、応力が加わった状態で特殊な環境下 におかれると応力腐食割れなどに至る。これらの現象の解明には、材料の表層 及び内部の格子欠陥や不純物析出の観察が必要不可欠である。現在、表層近く の格子欠陥や不純物を観測する手段として陽電子寿命測定や3次元アトムプロ ーブが実用化され広く用いられているが、材料深部を非破壊かつその場で観測 することは現状では不可能である。このような観測手段は材料劣化の初期診断 に非常に重要であり、その研究開発が強く望まれている。

マックスプランク研究所(独)[1]やローレンスリバモア研究所(米)[2]では、 陽電子を数 MeV に加速してサンプルに打ち込む手法について研究しており、深 さ数 mm までの陽電子測定が可能である。陽電子が物質中に注入されると、物 質中に存在する電子と対消滅して、多くの場合電子の静止質量に等しいエネル ギー(511 keV)を持った2つのガンマ線を放出する。対消滅するまでの時間は、 陽電子が注入された場所の局所的な電子密度に比例する。対消滅までの時間を 計測して、電子密度を計測するのが陽電子寿命分光法 (PALS; Positron Annihilation Lifetime Spectroscopy)である。また、静止系では180度方向に2本 の511keVのガンマ線は放出されるが、対消滅する前に持っていた運動量のため に2本のガンマ線の角度は180度からずれる。この角度や運動量に起因するド ップラー効果を測定することで、陽電子が注入された物質の中の電子の運動量 を得ることができる。このような分析法を陽電子消滅分光法 (PAS; Positron Annihilation Spectroscopy)と呼ぶ。しかし、陽電子の金属などの物質に対する透 過力は低いために、表面から数 mm 程度の内部までしか注入できない。そのた め、この手法は物質の表面を分析するに止まる。 そのため、アイダホ州立大学では電子線形加速器を用いて発生した制動放射 ガンマ線を物質に打ち込み、内部で陽電子と電子の対生成を起こさせ、発生し た陽電子が消滅するまでの時間を計測する手法が研究されている[3]。しかし、 光子強度の不足や低エネルギー光子散乱の影響などが問題であり、産業利用ま では多くの課題がある[3]。

図 4.1 光子誘起陽電子消滅法の概念図

そこで、産業技術総合研究所では、高エネルギーのレーザーコンプトンガン マ線を用いた陽電子消滅による観察法が提案され研究が開始された[4,5]。レーザ ー光をエネルギー数 100 MeV~GeV の電子にぶつけ、数 10 MeV のレーザーコ ンプトン散乱ガンマ線ビームを生成する。散乱角度をコリメータで切ることに よって、エネルギー広がりを 1~3%にできる。陽電子消滅法においては、制動 放射と異なり、低エネルギー光子成分がないため、測定時に散乱線の影響が非 常に少ないという長所を有する。エネルギー1.02 MeV 以上の高エネルギーガン マ線を物質へ照射すると、内部で電子-陽電子対生成反応が起こる。この反応 では高い変換効率(数 10%程度)でガンマ線ビームが陽電子ビームに変換され る。エネルギー10 MeV 以上の光子と物質の相互作用のほとんどは電子・陽電子 対生成である。この変換はガンマ線ビームが通過する軌跡上で起こるため、測 定サンプル内部でガンマ線ビームが通過した線上に陽電子が発生する。対生成 によって発生した陽電子は、電子とポジトロニムを形成した後に、速やかに周 囲の電子と再結合して消滅し、エネルギー511 keV のガンマ線を発生する(図 4.1 参照)。図 4.2 のように外部に置いた検出器で陽電子消滅ガンマ線を測定するこ とで、サンプル内部の空孔型格子欠陥や不純物析出等の情報が得られる。検出 器は、2本の511keV ガンマ線を同時に計測できるように配置する。511keV のガ ンマ線は、消滅前のポジトロニウムの持つ運動量のためにドップラーシフトを 受ける。511keV のピークの広がりから、ドップラーシフトの効果を評価し、対 消滅した電子の運動量や、空孔型格子欠陥濃度等を測定できる。

図 4.2 光子誘起陽電子消滅法の実験体系図

4.2 産業技術総合研究所で行われた光子誘起陽電子消滅法の測定結果

高エネルギーのガンマ線やX線等を用いた陽電子消滅法による材料分析は、 光子誘起陽電子消滅法と呼ばれ、材料深部の物性測定や非破壊イメージング手 法への応用が期待されている。陽電子はガンマ線ビーム線上に発生するため、 CTにおいて必要とされる線積分情報が得られる。したがって、発生した陽電子 消滅ガンマ線をすべて計測しつつ、供試体を並進・回転することで、第一世代 CTによって断層像を計測できる。図4.3は産業技術総合研究所で行われた陽電 子放出型 CTによる供試体の断層像である[5]。10 cm 四方のコンクリートブロッ クに、紙面に垂直に径の異なる鉄筋を4本挿入した供試体(図4.3の左図)を用 意し、光子誘起陽電子消滅法を用いた第一世代 CTによって、陽電子放出位置を 可視化した。中央の図が陽電子放出 CT 像である。右図は透過ガンマ線 CT 像で あり、比較のために示した。両者は同時に測定できるため、画像を比較するこ とで物質識別や原子番号識別が可能である。

なお、ガンマ線ビームを照射する側に 511keV ガンマ線の検出器を置き、陽電 子放出型ラジオグラフィを行うことができる。全ての測定を片面より行うこと ができるため、コンクリート構造体深部に配置された鉄筋など、大型構造物深 部に埋め込まれて、通常は観測することが困難な部品の形状などを外部から可 視化できる。トンネル壁などコンクリート壁深部にある部品の健全性を非破壊 で評価することが可能であり、今後、道路や橋脚などのメンテナンスへの応用 が期待される。

図 4.3 コンクリート角柱(左)、光子誘起陽電子消滅 CT 像(中)、透過ガンマ線 CT 像(右)。白く見えるのが鉄筋である。

4.3 次世代の高輝度 LCS ガンマ線を用いた陽子分析法

MeV 領域の LCS-ガンマ線ビームを用いた非破壊検査装置は、従来の X 線 CT 装置より高い透過力を有し、高い密度分解能と空間分解能が得られる。第一世 代 CT では、高い空間分解能を得るために細いビームを用いて小さなピッチで測 定を行う。細いビームは必然的に光量を落とすことになるため、良質な画像を 得るには測定時間が長時間になることが、第一世代 CT 法の難点である。今後、 CT を第二世代、第三世代とすることは実用化の観点から重要であるが、光量を 数ケタ増加することが必要である。エネルギー回収型リニアックなどの低エミ ッタンス電子ビーム源と高強度レーザーを用いることで、光量の増加が達成で きると考えられる。

また、陽電子及び、ポジトロニウムは電子密度の低い欠陥、空孔に局在しや すく、消滅までの寿命は電子密度が低い程長い。そのため、寿命を計測するこ とで原子空孔の大きさを測定できる (PALS)。陽電子・ポジトロニウムの寿命 は空孔中でナノ秒程度であるため、光子パルス幅を 200 ピコ秒以下にする必要 がある。既存の陽電子寿命測定装置の時間分解能は 120~200 ピコ秒であるが、 次世代の ERL-LCS ガンマ線源ではレーザー蓄積装置を用いた場合でも数+ピコ 秒以下のパルス幅を生成することができ、十分に PALS に必要な 200 ピコ秒を下 回る。また、時間分解能を優先した場合には数フェムト秒のパルスのガンマ線 を生成することできる。ERL-LCS ガンマ線を用いれば、PAS だけでなく PALS も合わせて産業利用のために実用化されることが期待される。 参考文献

[1] W. Bauer et al., Nucl. Instrum. and Methods in Phys. Res. B, 50, 300-306 (1990).

[2] F.A. Selim et al., J. Appl. Phys. 97(2005)113539.

[3] D.P. Wells et al., Nucl. Instrum. and Methods in Phys. Res. A 562 (2006) 688.

[4] 平出哲也、豊川弘之、他3名「光子誘起による陽電子消滅ガンマ線分光及び 短寿命原子核準位の測定法」、特許第4189836号(H20.9.26)

[5] H. Toyokawa et al., Proc. the 8th Intl. Topical Meeting on Nucl. Appl. and Util. of Accelerators (AccApp07), pp.331-335, Jan. 2008.

[6] T. Hirade, H. Toyokawa, T. Ohdaira, R. Suzuki, and H. Ohgaki, Materials Science Forum, 445, 474-476 (2003).
5 磁気コンプトン散乱による磁性材料の研究

要旨

円偏向した X線 (γ線)を、磁化させた磁性材料に照射し、コンプトン散乱を 計測することで、磁化のうち、電子スピンのみの磁化を計測可能である。この 計測は、X線や中性子のブラッグ磁気散乱を用いた手法では出来ない。レーザ ー・コンプトン散乱 γ線の生成技術では、右巻きと左巻きの円偏向 γ線を高速に 切り替えることができる。そこで、この γ線を利用すれば、従来のコンプトン 散乱法では不可能であった、強磁性体の変動磁化の動的測定が可能になり、磁 性材料研究の新しい領域が開けると期待される。その技術の現状について紹介 する。

5.1 はじめに

磁性材料は古くは方位磁石に始まり、近代では小型永久磁石、交流トランス、 磁気メモリーなどと、現代社会を支える重要な役割を担っている。2000 年ごろ からコンピューター等の記録媒体に用いられるハードディスクに対して、巨大 磁気抵抗 (GMR) ヘッドが実用化され、GB (ギガバイト)を超える大容量のハ ードディスクを安価に製造できるようにもなった。GMR ヘッドには、いわゆる スピントロニクス素材が使われている。このように新しい磁性材料は新しい技 術を生み出す源であり、今後の磁性材料探索では、中でも高周波特性に優れた 動的スピン磁気の研究が重要であると考えられる。そのような動的磁性を研究 するひとつの手法に、レーザー・コンプトン散乱 (LCS) γ線を利用して電子ス ピンを検知する、磁気コンプトン散乱法がある。この方法は、円偏向 γ 線を対 象物質に照射し、右巻きと左巻きの円偏光による散乱強度の違いを精密に測定 することで、スピン磁気モーメントを計測する。

磁気コンプトン散乱の特質は以下のように集約できる:(1) コンプトン散乱の 微分散乱断面積のうち、磁気散乱の微分散乱断面積は、入射γ線の円偏向度(完 全右円偏向度を1,完全左円偏向度を-1とする)に比例し、また電子スピン の向きとγ線の散乱ベクトルの内積に比例する。(2)散乱γ線のエネルギーに は、衝突前の電子がどのポテンシャルエネルギーにいたかは、インパルス近似 が成り立つので反映されず、エネルギースペクトルに、電子が動いていること によって生ずるドップラー広がりが重なって観測され、その「形状」に、全磁 性電子の軌道状態が反映する。(3)磁気コンプトン散乱の「強度」は、電子の全 スピン磁気モーメントのみに比例し、電子の軌道磁気モーメントは全く反映し ない。この性質はX線や中性子の磁気ブラッグ散乱の場合と大きく異なってい る。この特徴から磁気コンプトン散乱法で、磁性体の磁気モーメントを、スピン磁気成分と軌道磁気成分とを分離して、それぞれの大きさを定量的に決める ことが可能となる(図 5.1 参照)。磁気コンプトン散乱法で、散乱γ線からスピン情報を得るには、磁気コンプトン散乱の断面積が、スピン方向を反転させるか(磁化反転)、円偏向度を左右に切り換えるかで、符号を変えることを利用して、そのいずれかの方法を採る。

図 5.1 磁気コンプトン散乱の概念図

5.2 磁気コンプトン散乱による磁性物質の研究

磁気コンプトン散乱による磁性体の研究は、1970年に P.M. Platzman と N. Tzoar が理論的に提唱し[1]、N. Sakai と K. Ôno によって 1976年に、極低温で 核偏極した原子核から放射される円偏向 γ 線を用いて、初めて実証された[2]。 その後、簡単に利用できる円偏向 X 線 (γ 線) 源が存在しなかったために、基礎 研究に留まっていたが、1980年代に放射光 X 線が出現すると、100keV を越える 円偏向 X 線が利用可能となり、磁性電子の電子状態に関する、極めて多彩な情 報が得られるようになった[3]。

現在、100keVを越える放射光X線は、マルチポールウィグラーで発生させている。そのため、円偏光の偏向切り替えは、マルチポールの再配列を必要とするため、直線偏向度を変えずに、円偏向度の符号のみを精密に切り替えること や、迅速に切り替えることが極めて難しい。そこで、偏光条件は一定に保持し て、強磁性体の磁化方向を反転させて、磁気散乱強度成分の変化分を測定する 手法が採られている。その結果、希土類元素を含む保持力の大きな、多くの永 久磁石などの測定は困難で、唯一、Sm および SmCo₅ をパルス強磁場で磁化反 転させて測定した報告例があるだけである[4,5]。また、磁化反転法では、磁気ヒ ステリシスを伴う磁性現象のスピンの情報や、スピンの変動磁場や変動温度に ともなう動的挙動を知ることも制約を受ける。そのため、磁化反転に依らない、 磁気コンプトン散乱法が望まれている。

5.3 LCSy線の円偏向高速切り替えによる磁気コンプトン散乱測定法の提案

磁化反転法に替えて、LCSy線を用いる円偏向切り換え法を提案する。LCSでは、レーザー光の偏向がそのまま y線に反映されるため、レーザー光の偏向状態を迅速に切り替えれば、LCSy線の偏向状態もそれに応じて迅速に切り替わる。 円偏向切り換え法が実現すれば、超強磁場下での測定、磁場一定の下での、磁性体の温度変化に伴う相転移現象、磁区の高周波磁化過程、パルス磁場印加後の時分割測定など、新たな研究が開拓されるはずである。

先に磁気コンプトン散乱の特質のひとつとして述べた、電子の軌道状態の知 見には、次のような価値がある。量子力学によれば、物質中の電子状態を表記 できる波動関数表示には、実空間表示 $\psi(\mathbf{r})$ と運動量表示 $\chi(\mathbf{p})$ とがあり、両者 はフーリエ変換で結ばれた等価の表現である。たとえば、原子軌道の波動関数 のそれぞれの空間対称性は、同じ球面調和関数である:実空間表示で $Y_{\rm lm}(\mathbf{x},\mathbf{y},\mathbf{z})$ であれば、運動量空間表示で $Y_{\rm lm}(\mathbf{p}_{\mathbf{x}},\mathbf{p}_{\mathbf{y}},\mathbf{p}_{\mathbf{z}})$ である。実験的には、前者は X 線の ブラッグ散乱から得られる、電荷密度分布 $|\psi(\mathbf{r})|^2$ に直結し、後者は X 線のコン プトン散乱から得られる、運動量密度分布 $|\chi(\mathbf{p})|^2$ と直結する。電子の軌道状態 の決定は、p 空間情報の持つ対称性から可能で、原子軌道は、たとえば 3*d* 軌 道と 4*f* 軌道とでは、その広がり方と対称性に大きな違いがあるので、観測され たドプラー広がりを解析することで、"原子選択的な知見"を得ることができる。 このような知見は 3*d*,4*f* 元素からなる磁性材料の特性の解析に有用である。なお、 p 空間の情報は、バンド構造で表記される伝導電子系の電子状態の研究にはこ とに有用である。

5.4 ニュースバルの LCSy 線を用いた実験

これまで円偏向 LCSγ線による磁気コンプトン散乱実験は、SPring-8の兵庫県 立大学ニュースバル実験施設での実施例が世界で唯一である。蓄積電子のエネ ルギーは 974 MeV、電流値 200 mA で、電子軌道の直線部分に、4W の CW-CO₂ レーザーを電子線に照射して、前方散乱した LCSγ 線を Pb コリメーターで切 り、最高エネルギー 1.7 MeV の LCSy 線を得ている[6]。レーザー光は 1/4 波長 板で円偏光にしている。γ線の円偏向度確認のため、磁気コンプトン散乱強度を 測定した。散乱体の位置でのγ線の光子数は、約 10⁶ photons/s と見積もられた。 散乱体は小型電磁石に組み込んだ鉄とし、散乱γ線のエネルギースペクトルを、 大容量 (64mm^Φ x 60 mm^t) の Ge 半導体検出器で測定した。図 5.2 (a) は、コン プトン散乱角 160 度で、磁化反転の前後の散乱強度変化を測定した片方のエネ ルギースペクトルである。図 5.2 (b) は磁化反転による変化分のエネルギースペ クトルで、1700ch 付近のみにピークが見られる。このピークは、磁化した鉄か らのコンプトン散乱強度のみが、磁場反転で変化したことを意味し、入射 γ線 が円偏光であることを実証している。この測定では円偏光の生成は手動の 1/4 波 長板を回転させて行っている。偏向切り替法による測定では、入射光の直線偏 向パラメーターも正確に検知する必要があり、測定器が準備されている。また、 円偏光生成の他の方法として、Pockels Cell の利用がある。CO2 レーザー用に CdTe の市販製品があり、それを用いれば、100kHz 近い周波数まで偏光切り替 えが可能とされている。

図 5.2 ニュースバルでの磁気コンプトン散乱実験結果

100 kHz で円偏向切り替えをする、磁気コンプトン散乱実験の一例を想定して みる。たとえば、10 kHz の交流磁場下の現象が追跡できる。この測定では、1 μ s より短い時間分解能を持った検出器で散乱 γ 線強度を、時系列のデーターとし て 1 μ s 毎に記録すればよいであろう。データーは 10kHz の変動磁場の周期に同 期させて、繰り返し集積して、充分に統計精度が期待できる積算値が得られた 後、10kHz の周期を持った成分をフーリエ解析で抽出し、必要な磁気的情報を 得ることになるであろう。集積データーにドプラー広がりを記録するエネルギ ースペクトルまで得られれば、3*d* と 4*f* 元素からなる磁石の磁気特性を原子選 択的に解析できる。この情報は磁性材料の動的特性の改善に役立つであろう。

5.5 ERL における高速切り替え円偏向 LCSy 線の生成

円偏向の高速切り換えは次の手法も可能である。ERL (Energy Recovery Linac)-LCSy 線発生では、レーザー蓄積装置を用いる。数十 MHz から数百 MHz の繰り返しでレーザーパルスを蓄積する装置である。レーザー蓄積を安定に実 現できる 4 枚ミラー型の装置では、円偏光の右巻きと左巻きが別々の固有モー ドを持ち、共振器長の微小な調整で右巻きと左巻きを選択的に蓄積できる[7]。 右巻きと左巻きの異なる円偏光のレーザーパルスを交互に高速に生成するため の装置の概念図を図 5.3 に示す。シードレーザーのレーザーパルスを2つに分 岐させ、光学素子を用いて異なる円偏向を持たせる。右巻きと左巻きのレーザ ーパルスを、それぞれ右巻きと左巻きに調整されたレーザー蓄積装置に入射し、 レーザーを蓄積させる。2つの蓄積装置を串刺しするように電子ビームの軌道を とり、2か所でコンプトン散乱させ、左巻きと右巻きのγ線を生成させる。2つ の散乱ポイントの距離と、蓄積装置にレーザーを導入させる経路の距離を調整 することで、左巻きと右巻きの γ線パルスの時間間隔を調整し、交互に照射ポ イントに到着するように調整する。この方法で、蓄積装置に蓄積されたレーザ ーパルスの繰り返し周波数で、右巻きと左巻きの γ 線パルスを交互に発生させ ることができる。なお、この方法では有効利用されるレーザー出力は半分にと どまるが、大きな問題ではない。

繰り返し数は、蓄積装置のレーザーの光路の長さに依存する。例えば、光路 が 6m の蓄積装置に、一つの光バンチを蓄積することを考える。1 周が 6m な ので、光は約 20ns で周回し、50MHz に相当する。2 つの蓄積装置の電子との 散乱ポイント間の距離と、蓄積装置への導入部の長さを調整することで、交互 に右巻きと左巻きのγ線が飛来するように調整する。その結果、100MHz で右巻 きと左巻きの円偏光ガンマ線が交互に飛来する。なお、蓄積装置内の電子バン チの数を増やすことで、繰り返し周波数を上げることができる。ただし、個々 の光バンチの輝度が落ちるため、生成されるγ線の輝度も下がる。

レーザー蓄積装置を使わない場合には、単体のレーザーの繰り返しで決まる。 現在でも、数 GHz の高繰り返しファイバーレーザーが実現しているので、蓄積 装置を使わない場合と比較して 3 桁程度、γ線の強度が落ちるが数 GHz の高速 度の繰り返しが可能である。

このような高速切り替えの円偏向 γ 線ビームが実現した場合には、高速に信 号処理ができる検出器が重要な要素となる。現在、臭化ランタンシンチレーシ ョン検出器などが普及し始めている。臭化ランタン検出器は、半導体検出器よ りは劣るが、1MeV 領域で約 3%の高いエネルギー分解能を有する。数十 ns 程 度のパルス幅を持ち、100MHz 程度なら電子回路を開発することで対応できると 予想される。より高速な装置に対しては、MeV 領域の分光器と高速な検出器の 組み合わせを用いることが考えられる。現在、LCSγ線の発展と共に、γ線領域 の分光器が再び脚光を浴びている。エネルギーを分光する段階で輝度が数桁落 ちるというデメリットがあるが、エネルギー分解能 dE/E=10⁻⁶ が実現しており [8]精密な分析が可能である。

高繰り返しの円偏向切り替えが実現すれば、現在の磁場反転では計測が事実 上不可能な、超硬強磁性体が測定可能になる。新たな磁性材料が探索されるだ ろう。また、ns、ps の時間スケールの動的磁性現象が追跡可能になり、これま でとは全く異なる研究手段を提供することになる。なお、本測定技術で鍵とな る高速偏向切り替え法は、磁気コンプトン散乱実験に限らず、X 線領域の共鳴 散乱・吸収実験などにも利用できる。

図 5.3 高速切り替え円偏向 LCSy 線発生装置の概念図

参考文献

[1] P.M. Platzman and N. Tzoar, Phys. Rev. B2, 3556 (1970).

[2] N. Sakai and K. Ôno, Phys. Rev. Letters 37, 351 (1976).

[3] *X-ray Compton Scattering*, ed. M.J. Cooper, P.E. Mijnarends, N. Shiotani, N. Sakai, and A. Bansil, Oxford Series on Synchrotron Radiation **5**, 2004 Oxford Science Publication.

[4] H. Adachi et al., Phys. Rev. B56, R5744-6 (1997).

[5] A. Koizumi et al., J. Phys. Soc. Jpn. 66, 318-21 (1997).

[6] H. Horikawa et al., Nucl. Instr. Methods in Phys. Res. A618, 209-15 (2010).

[7] Y. Honda et al., Opt. Comm. 282, 3108 (2009).

[8] E.G. Kessler Jr. et al., Nucl. Instr. Meth. A457, 187 (2001).

6. ガンマ線イメージング

概要

探傷検査や核セキュリティー分野では、対象物の形状・組成・密度などを非 破壊、かつ高速(高スループット)で分析を行うことが要求されている。検査 対象物の特性、形状の違いによって、さまざま X 線・ガンマ線検査装置が開発 されている。これまで、X 線、ガンマ線放射強度から来る制限から、大型の対 象物の検査に有効なものは実現していない。近年の加速器技術・レーザー技術 の急速な発展により、実現性の高まってきたエネルギー回収リニアック(ERL) の高輝度電子ビームとレーザー光の散乱により生成する超高輝度ガンマ線

(ERL-LCSγ線)は、既存のX線・ガンマ線の輝度に比べ、10⁵-10⁷倍の強度 であることが期待されている。超高輝度ERL-LCSγ線により実現が期待される、 高度な3次元分析法について、基本的な手法等について述べる。

6.1 ガンマ線イメージング技術の背景

1) ガンマ線・X線と物質の相互作用

ガンマ線・X線と物質の相互作用は主に、物質中の電子との相互作用である 光電効果、コンプトン散乱、電子対生成の3つである。これ以外の相互作用と しては、物質中の原子核との散乱や原子核近傍の強い電場との散乱であるデル ブリック散乱があげられる。

2) 光電効果

光子と原子が衝突し、軌道電子が放出される現象のことで、このとき放出され る電子のことを光電子と呼ぶ。*I*を電子の電離ポテンシャルとすると、光電子の エネルギー E_e は入射光子のエネルギー E_γ から*I*を引いたものとなる ($E_e = E_\gamma - I$)。光電効果は、入射光子のエネルギー E_γ が *I* 以上で起きる。光 電効果の確率 *P* はエネルギーが低いほど高く ($P \propto E_\gamma^{-3.5}$)、また、原子番号が 大きいほど ($P \propto Z^5$) おこりやすい。

3) コンプトン散乱

コンプトン散乱は光子と電子が弾性散乱を起こし、光子エネルギーの一部を電 子に付与する散乱現象である。コンプトン散乱は、原子に補足されている電子 数に比例しているため、散乱確率は物質中の電子密度(原子番号)に比例する。 4) 電子対生成

光子のエネルギーが電子-陽電子対生成の静止質量エネルギーより大きくなる と光子は電子-陽電子対に変換可能になる。相互作用の確率は原子番号の2乗に 比例し、 $E_{\gamma} - 2m_ec^2$ に比例する。光子と物質との相互作用のおこりやすさの例 として、鉛およびアルミニウムにガンマ線を入射した際の減衰率を図 6.1 に示す。

図 6.1 光子と物質の相互作用

図 6.1 からわかるように、鉛に対する光子の透過力は、3~4 MeV 近辺で最も 高くなり、100 keV の光子と比べほぼ 2 ケタ高くなっている。したがって、大型 の対象物や鉛などの原子番号の大きい物質によって遮蔽された対象物の分析に は、数 MeV の光子を用いるのが効果的である。また、アルミニウムのような軽 い(原子番号の小さい)物質に対しては、電子対生成の確率が 10 MeV より高い エネルギー領域で顕著になる。

光電効果、コンプトン散乱、電子対生成の原子番号依存性が異なるため、透 過率の違いがコントラストとなり物質量だけではなく物質種のイメージングに も用いることができる。図 6.1 左に示されている鉛に対する減衰係数の 0.1 MeV 近辺には、K 殻吸収端が表れているが、この吸収端を挟むエネルギーでイメー ジングを行うことにより、特定の元素を強調して表示することで特定元素の有 無の判別も可能である。

- 6.2 ガンマ線を用いたイメージング
- 1) ガンマ線イメージング法の分類

光子と物質の相互作用の原子番号依存性、エネルギー依存性の違いをうまく 利用することで、各種のイメージングが可能である。対象物での相互作用に基 づき大きく分類すると、対象物を透過する光子を利用する透過イメージングと、 対象物での散乱を利用する散乱イメージングに分類される。代表的な応用例に ついて、以下に紹介する。

透過イメージングとして代表的なものは、いわゆるレントゲン撮影である。 図 6.1 に示した減衰係数の違いにより画像の濃淡としてイメージングを行うこ とができる。簡便な画像診断が可能である反面、散乱ガンマ線の影響を受けや すい。散乱ガンマ線の影響を取り除くためには、単色ガンマ線ビームを入射光 子とし、エネルギー弁別の可能なガンマ線検出器を用いることで対処すること が可能であり、産業技術研究所にて高品位透過イメージングの実施例がある。

散乱イメージングとして代表的なものは、後方散乱 X 線イメージングがあげ られる。後方散乱 X 線イメージング装置は、X 線のコンプトン効果を利用した ものである。光子ビームを対象物に照射し、コンプトン散乱により後方に跳ね 返される光子数を測定する。反跳される光子数は、コンプトン散乱の断面積と 自己遮蔽で決定される。原子番号が小さい物質は光子の自己吸収が少ない。し たがって、より多くの光子が検出器で観測される。この特徴から、原子番号の 大きい物質の検出に有効な透過イメージングと組み合わせて用いられる場合も ある。ここに挙げたコンプトン散乱を利用したイメージングでは、対象とする 元素の原子番号に比例した散乱確率の差を利用しているため、元素の違いによ るコントラストがそれほど強くは出ない。これに対し、対象とする元素の原子 核共鳴散乱現象を利用する原子核共鳴散乱(NRF)イメージングでは、対象と する同位体の有無を直接的に検出できるため、極めて高いコントラストが得ら れるほか、特定核物質の同定にも適用可能である。また、光子と物質の散乱現 象としては、対象物の原子核近傍の強い電場との相互作用であるデルブリック 散乱が知られている。鉛などの原子番号の大きい原子核近傍で発生し、デルブ リック散乱のn次の摂動項は原子番号Zの2n乗に比例するため、強力なガンマ 線レーザーなどを用いて、高次の散乱現象を観測することが可能になれば、コ ントラストの高い重元素のイメージングに応用できる可能性がある。

対象物から透過または散乱した光子の検出によってイメージングを分類する と、光子数のみの情報を用いるタイプ、光子のエネルギー情報も用いるタイプ、 光子の運動量ベクトル (エネルギーおよび方向)を用いるタイプに大別できる。 X線フィルムは、最も古典的なイメージング素子であり、フィルムに分散させ た感光材をX線が電離・励起することで濃淡によりイメージングを行う。露光 ごとにフィルムを交換することが必要である。この欠点を補うのが近年発展し ている半導体フラットパネル検出器であるが、半導体式の電荷計測装置の前面 に設置したパネルで電子正孔ペアを発生させ、電気的に計測を行い、蛍光物質 からの発光をフォトダイオードで受光することにより、連続イメージングを行 うことが可能となる。光子の持つエネルギーを電子正孔ペアやエネルギーの低 い蛍光に変換するため、入射光子のエネルギー情報はイメージングを行う場合 に失われてしまう。これに対し、エネルギー分解能の高い単体の半導体検出器 やシンチレータをアレイ化することで、エネルギー情報をより積極的に利用す ることも可能である。光子のエネルギーを計測することで、K 殻吸収端の前後 のコントラストを利用したイメージングや、原子核共鳴散乱で得られる特定の ガンマ線のみに着目したイメージングが可能になる。コンプトンカメラは光子 検出器内部で発生するコンプトン散乱過程の運動学を解析することにより、光 子の運動量ベクトルを決定するタイプのイメージング装置である。

イメージングに用いる光源でイメージングを分類すると、照射面積(ビーム か大面積か)とエネルギースペクトル(単一エネルギーか広帯域エネルギーか) で分類することができる。検出器の空間分解能やエネルギー分解能はその方式 によって大きく異なるが、どの光源と組み合わせるかによって、低い空間分解 能やエネルギー分解能を補うことが可能である。

2) 超高輝度単色ガンマ線を用いたイメージング

前節で示したように、ERL-LCS ガンマ線源は既存の X 線・ガンマ線の輝度に比 ベ、10⁵ – 10⁷倍の強度であることが期待されており、従来不可能とされてきた 高度なイメージングを実施する潜在能力を持つ。ここでは、期待されるガンマ 線の特性から期待できるイメージングについて概略を示す。

まず、10⁵ – 10⁷倍の強度であることから、これまで活用することが困難であった原子核共鳴散乱を用いるイメージングが現実的になる。原子核共鳴散乱の 共鳴エネルギーにそろえたガンマ線ビームを対象物に照射することで、特定の 原子核の有無を判別できるため、特定核物質を対象としたコンテナの非破壊検 査などで期待が大きい。

また、単色ガンマ線を用いるために、共鳴エネルギーに一致するガンマ線の フラックスのみを高くすることで、対象物に与える全放射線量を少なく保った まま、イメージングに必要なガンマ線量を照射することができる。たとえば、 生体への照射の場合に、不要な放射線照射を減らすことができるというメリッ トがある。

6.3 ガンマ線走査・大立体角検出器・ガンマ線飛行時間分析による先進イメージング

前節で紹介したコンテナや生体といった大型対象物のイメージングを行う場 合には、従来のコンプトンガンマ線を用いた試験研究で使われてきた小型可動 式サンプルステージを用いることは現実的ではない。ガンマ線ビームの進行方 向は電子ビームの進行方向と一致するためビームを走査することもできない。 大型対象物のイメージングを効率よく行うためには大面積の検出器システムも 不可欠である。

したがって、ERL-LCS ガンマ線のような超高輝度の次世代光源を用いたイメ ージングではこれまで困難であった対象物やイメージング手法を適用できる可 能性があるが、ビーム走査法や大面積の検出器システムの開発も同時に重要と なる。

本節では、次世代の超高輝度ガンマ線源を用いたイメージングシステムに向けて必要とされる要素技術について概観を示し、いくつかの具体的な適用事例 を示す。

1) ガンマ線ビームスキャニング

相対論的速度の電子ビームとレーザー光の正面衝突で生成するレーザーコン プトン散乱ガンマ線の射出方向は、電子ビームの進行方向と常に一致する。し たがって、電子ビームの運動方向を偏向し、それに追随するようにレーザーを 衝突させることでガンマ線ビームの射出方向を変化させることができる。いく つかのアイデアがあり、京都大学・紀井からは ERL 加速器のような周回型加速 器への導入が比較的容易なガンマ線ビームスキャニング法が提案されている。

図 6.2 ガンマ線スキャニングシステム模式図

図 6.2 にガンマ線ビームスキャニング法の概略図を示す。この手法では、電子 ビームの進行方向を4台の双極電磁石を用いて常に回転楕円体の1つの焦点を 通るように制御し、その焦点にレーザー光を収束することによりガンマ線のス キャンを行う。ERL のような周回型加速器では、電子ビーム軌道周長を常に一 定に保つ必要があるため、もう一組軌道長補正用の双極電磁石群を導入するこ とで、軌道長補正が可能である。図 6.2 ではおよそ 10 度の角度でガンマ線ビー ムを自由に偏向可能な状態を図示している。

2) 大立体角検出器システム

当然のことながら、大型の対象物のスキャンに際しては、大立体角の検出器シ ステムが必要である。原子核共鳴散乱を用いて同位体の判別を実施する場合に は、ガンマ線のエネルギー識別も必要である。高エネルギー分解能でガンマ線 エネルギーの計測を行うには高純度ゲルマニウム検出器が用いられる。しかし、 高計数率への対応が難しい、寒剤の補充が必要、高価であるといった欠点があ り、大立体角検出器システムには適していない。そこで、エネルギー分解能は ゲルマニウム検出器に劣るが、高計数率での計測が可能で比較的安価な LaBr3 などの高速シンチレータを用いたアレイが有効である。また、さらに大きな立 体角をカバーするためには、コンプトンカメラを用いることも有効である。

3) 飛行時間分析

ERL-LCS ガンマ線では、ピコ秒程度の時間幅を持つ電子ビームとレーザー光 のコンプトン散乱を用いるため、生成されるガンマ線の時間幅もピコ秒程度と なる。したがって、高時間分解能を持つ高速シンチレータを用いてガンマ線検 出を行うことで、ガンマ線発生点から対象物中の原子核共鳴散乱事象の発生点 までの距離と、原子核共鳴散乱事象の発生点からガンマ線検出器までの距離の 和を求めることができる。距離の分解能はガンマ線検出器の時間分解能により 制限されることが予測される。しかし、これらの高速シンチレータでは1ナノ 秒を切る時間分解能を得ることが可能であり、大型対象物中の数センチメート ルの空間分解能で原子核共鳴散乱事象の発生点を知ることが可能になる。コン プトンカメラのようなガンマ線の運動量ベクトルを知ることのできる検出器シ ステムと併用することで、高い空間分解能でのイメージングも可能になる。

6.4 まとめ

次世代ガンマ線として期待の大きい ERL-LCS ガンマ線を用いた場合の大型対 象物のイメージングに適用可能な技術調査を行った。ガンマ線ビームの走査は 40 フィートコンテナなどの大型対象物のイメージングにおいて特に有用である。 また、大型対象物のイメージングには大立体角をカバーする検出器システムが 不可欠であるが、高速・高時間分解能のシンチレータアレイやコンプトンカメ ラの利用が効果的である。

7 元素の起源の探求

要旨

自然界には約 260 核種の安定な同位体が存在しており、これらの同位体が宇宙のどこで、いつ、どのように生成されたかを明らかにすることは、自然科学の根本的テーマの一つであり、現在でも勢力的に研究がすすめられている。しかし、既存の加速器技術と測定器技術の限界から、現在も実験的に知ることができない物理量が存在する。過去の実験的困難を克服しブレイク・スルーを起こすための大強度ガンマ線ビームを用いた新実験的研究について議論する。

7.1 序論

自然界には90種の元素、約260種の安定同位体が存在する。これらの元素や 核種が「いつ」「どこで」「どのようにして」作られたのか、またレアメタルや レアアースなどの元素はなぜ稀少なのか、などの素朴な疑問は、17世紀に近代 的元素観が芽生えて以来、今日までの自然科学の根本的テーマである。

元素の起源に関する現代の理解は、初期宇宙元素合成のシナリオを与えた G. Gamow らによる α - β - γ 理論[1]と、重元素の起源を理解するための礎となった E.M. Burbidge、G.R. Burbidge、W.A. Fowler、F. Hoyle による恒星内元素合成の理 論[2]にまで遡ることができる。その大筋は、まずビッグバン直後の QCD 相転移 で作られた陽子、中性子から始まる。軽い核の反応ネットワークによって⁷Li までの軽元素が合成される。その後、それらの軽い原子核を含む星間ガスから 恒星が誕生し、その内部で水素燃焼、ヘリウム燃焼過程等を経て、鉄族までの 中重核が合成されたとするものである。さらに恒星のヘリウム燃焼領域では ¹³X(α , ν)¹⁶O や²²Nɛ(α , ν)²⁵M γ 等の反応で供給される中性子を用いて、安定線に沿 って進む遅い中性子捕獲過程(s 過程)により鉄よりも重い元素が合成される。 図 7.1 ではこういった過程で合成された元素の典型例として太陽での原子核の 組成比を示している。

一方 太陽質量の 8~10 倍以上の大質量星では進化の最終段階において重力崩 壊型の超新星爆発が起こる。その際に中性子ドリップラインに近い領域を通る 速い中性子捕獲過程 (r 過程)が進行し、やはり重元素の合成が行われると考え られている。s 過程、r 過程はいずれも中性子捕獲反応によって進行するため、 (ν,γ) 断面積が小さくなる N=50、82、126 近傍が停留点となり、存在比のピーク を生じる。

図 7.2 に恒星内部における元素合成過程についての予想経路を示している。s 過程では安定線付近の経路をとるため各ピークの中心および右側の成分に寄与 し、r 過程では中性子数だけが魔法数に到達した後 β 崩壊を起こすため各ピーク の左側の成分に寄与する傾向が見られる。

これらの元素合成のシナリオの正しさは、予測される元素の合成量と、天文 観測やさまざまな試料の分析から得られる元素の存在比とを比較することによ って検証される。しかし、合成量の予測には、不安定核を含むさまざまな原子 核に関するデータを入力する必要がある。最近、8~10 m 級の大口径地上望遠鏡 によって個別の恒星、特に金属度が極めて小さい初期世代天体の表面での元素 存在比のデータが得られるようになったこと[5-8]や、X 線・ガンマ線天文衛星 によって爆発的天体現象のより詳細な姿が見えてきたこと[9-12]、宇宙背景輻射 の高精度測定から宇宙論的パラメータの精密な決定が可能になったこと[13,14] など、観測分野の進歩がめざましく、これまでの定説となっていたシナリオの 不十分な点が次第に明らかにされつつある。

図 7.1 同位体の太陽系組成比[3,4]

現在、数十m級の超大口径望遠鏡[15,16]や、宇宙線[17]、重力波[18,19]、天体 ニュートリノ[20,21]をキャッチするための大型観測装置が計画中または建設中 であり、ますます詳細な観測データが取得可能になると期待される。これに呼 応して、原子核データについても質・量ともに向上させてゆくことは、元素の 起源と宇宙の歴史を解明してゆく上で根本的に重要である。特に輻射捕獲反応、 およびその逆反応である光核反応は、さまざまな元素合成過程において主役を 演ずる重要な反応である。また、これらの光核反応は、原子核物理の基礎研究 としても十分に意義がある。

図 7.2 恒星内部における元素合成(α 過程、s 過程、r 過程)の予想経路

実験的な観点からは、光核反応は輻射捕獲反応と比較して、

- 入射粒子が電気的に中性であるため、減衰長が長く、厚い標的を使用できる
- ・標的に対する損傷は軽微なので、検出器が標的を兼ねる「能動標的」の導
 入も容易である
- こういった検出器を用いれば、二体反応だけでなく多体に分解する反応測定も可能となる。したがって捕獲反応チャンネルにおける多体融合反応を調べることができる
- ・ 電磁相互作用は弱い相互作用における中性カレントと相似な演算子型を持つため、弱中性カレントによるニュートリノ原子核反応をシミュレートすることが可能である

など、多くのメリットを備えており、宇宙核物理学および元素合成研究におい て重要な、低エネルギー原子核反応を研究するためのユニークなプローブであ る。

この章では、宇宙核物理学の分野において特に注目されているいくつかの反応を例として取り上げ、大強度ガンマ線ビームを用いた実験的研究を提案する。

7.2 恒星内ヘリウム燃焼における(α,γ)反応

ヘリウム燃焼段階の恒星は、中心部で起こる 4 He(2α .y) 12 C(トリプル α)反応、 およびそれに続く¹²C(α, y)¹⁶O反応によって熱エネルギーをまかなっている。そ れらの反応率の大小はヘリウム燃焼終了後のコアの質量を左右し、最終的には、 恒星が重力崩壊型の超新星爆発を起こすのに必要な初期質量の下限値に影響を 与える[22]。ヘリウム燃焼領域はまた、¹³C(a,n)¹⁶O、²²Ne(a,n)²⁵Mg 反応などを中 性子源とする遅い中性子捕獲過程(s-過程)による重元素合成の場でもある。し かし、上記の (α,γ) 反応率が変更を受ければ、ヘリウム燃焼領域の熱的環境も 変わり、s-過程によって生成される元素量も変化することになる。したがって、 ⁴He(2α, γ)¹²C および ¹²C(α, γ)¹⁶O 反応の反応率は、恒星の進化とそれに伴う元素 合成過程を定量的に理解するための、もっとも重要な原子核パラメータのひと つである。いずれの反応率も、恒星内部の温度によって決まる平均反応エネル ギー(いわゆるガモフエネルギー)~300 keV の近傍での直接測定による実験的 データは存在せず、理論的な推定値に頼っている現状である。後述するように、 ⁴He(2α.ν)¹²C 反応は共鳴反応過程が支配的であるため推定誤差は約 15%に抑え られているが[23]、¹²C(α,γ)¹⁶O 反応は閾値の約 45 keV 下に存在する J^{rr} =1⁻、約 245 keV 下に存在する J[#]=2⁺、および励起エネルギー約 2.45 MeV の J[#]=1⁻ の各 共鳴準位からの寄与があり、それらの干渉効果が問題となるため、300 keV 近傍 での推定誤差は 50%に達する[24]。これに対して、逆反応である ¹⁶O(γ,α)¹²C、 ¹²C(γ.2α)⁴He 反応の閾値近傍における断面積データが得られれば、反応率の誤差 低減に画期的向上をもたらす。

(1) ¹²C(a, γ)¹⁶O 反応

図 7.3 は、これまでに発表された E1 遷移断面積 $\sigma_{EI}(E)$ から、Eq. 1 にしたが ってクーロン障壁の透過率の影響を取り除いて得られた天文学的 S 因子 (astrophysical S-factor) $S_{EI}(E)$ を重心系での反応エネルギー $E_{c.m.}$ の関数として 表示したものである。

$$S_{E1}(E_{c.m.}) = \sigma_{E1}(E_{c.m.}) \times E_{c.m.} \cdot \exp(2\pi\eta)$$

$$\eta = \frac{e^2 Z_{12C} Z_{\alpha}}{\hbar} \sqrt{\frac{\mu}{2E_{c.m.}}}$$
(1)

ここで η はゾンマーフェルトパラメータ (クーロン透過因子)、*e* は素電荷、 Z_{I2C} 、 Z_{α} はそれぞれ ¹²C と α 粒子の原子番号、 \hbar は換算プランク定数 (またはディラ ック定数)、 μ は ¹²C と α 粒子の換算質量である。

1000~1500 keV の領域では測定データに1 桁近い食い違いがあり、これらのデ

ータを元にガモフエネルギー近傍(~300 keV)での反応率を正確に推定することは困難である。測定実験は、ヘリウムガス標的と ¹²C イオンビームを用いた Redder et al. を除いては、すべて固体 ¹²C 標的に α 粒子ビームを照射し、反応で放出される γ 線を検出するという手法によるものである。図 7.4 に示すように、 ¹²C(α , γ)¹⁶O 反応断面積は、1 MeV 以下では 0.1 nb 以下と極めて小さくなってしまい、数百 μ A 以上の α 粒子ビームを用いても 1 日あたり数イベント程度しか観測されない。計数率を増やすにはより大電流のビームが必要となるが、その場合、標的の損傷が急激に進行し、有効な標的の厚さの決定精度が失われるというジレンマがある。この理由により、~900 keV 以下の領域に対しては測定の目処が立っていないのが現状である。

図 7.3 E1 遷移に対する天文学的 S 因子 (S (E1))。○; Dyer and Barnes[25],
●; Redder et al.[26], ×; Kremer et al.[27], △; Ouellet et al.[28],
□; Roters et al.[29], ●; Kunz et al.[30], ●; Assunção et al.[31],
•; Makii et al.[32]

ここで提案する大強度ガンマ線ビームによる ${}^{16}O(\gamma,\alpha){}^{12}C$ 反応断面積測定は、 以下のような理由により従来の ${}^{12}C(\alpha,\gamma){}^{16}O$ 反応実験における困難が克服される。

まず、同じ重心系エネルギーにおいて、逆反応である ${}^{16}O(\gamma,\alpha){}^{12}C$ 反応と、順反応である ${}^{12}C(\alpha,\gamma){}^{16}O$ 反応の基底状態間遷移に対する断面積を比較すると、詳細平衡の原理を仮定した場合、位相空間体積の違いのため、1 MeV では約 40 倍、500 keV でも約 25 倍の増幅効果が得られる (図 7.5 参照)。したがって、逆反応の場合は 500 keV においても 0.1 nb 程度の反応断面積が期待できる。

また、逆反応測定においては、入射粒子であるガンマ線は電気的に中性であ るため、

- 大強度においても標的の損傷は軽微である
- ・ ガンマ線の減衰長が長いため、厚い標的が利用可能である

・ ガンマ線は直接標的を電離しないため、検出器が標的を兼ねる"能動標的" を

利用でき、ほぼ4πという大立体角での測定が可能である

など、順反応測定に比べて多くのメリットがある。

具体的な測定方法としては、CO₂ガスを封入したワイヤーチェンバーまたはストリーマーチェンバーを能動標的として用いる。装置の概念図を図 7.6 に示す。

図 7.6¹⁶O(γ,α)¹²C 反応断面積測定のための装置概念図(側面図)

¹⁶ $O(\gamma,\alpha)^{12}C$ 反応イベントの計数率としては、たとえば重心系反応エネルギー 500 keV、入射ガンマ線エネルギー7.662 MeV での測定を行なった場合、ワイヤ ーチェンバーの有効長を2m、CO₂ガス圧を100 hPa、入射ガンマ線強度を10¹⁰/s、 予想断面積を0.1 nb と仮定すると、1 時間あたり約3 カウントが期待される。こ れは同様の手法による光核反応測定の経験から、十分に計測可能な計数率である。この手法では、反応で放出される荷電粒子のエネルギーロスおよび軌跡の形状に注目して解析を行なうことで、ほぼ完全にバックグラウンドを除去することが可能であり、7日間の測定で統計誤差~5%を見込むことができる。重心系エネルギー300 keV の領域では $^{16}O(\gamma,\alpha)^{12}C$ 反応断面積は~1 fb 程度と予想されるが、ガンマ線強度を 2×10^{11} /s に増強し、検出器長を 5 m、CO₂ ガス圧を 1000 hPaとすると、100 日間の連続測定で 75 カウント、統計誤差~12%が期待される。

(2) ⁴He(2a, γ)¹²C 反応

⁴He($2\alpha,\gamma$)¹²C 反応については、温度 $T > 2 \times 10^8$ K では ¹²C の第二 0⁺ 励起状態 を経由する共鳴反応過程が支配的となるため、同状態について実験的に得られ ている共鳴パラメータを用いて約15%の精度で反応率が推定されている。一方、 2×10⁸ K 以下の低温では非共鳴反応過程の寄与が増大し、反応率の推定にあたっ ては、3 つのα粒子の散乱状態を精密に取り扱う必要がある。最近、CDCC (Continuum-Discretized Coupled-Channel) 法を用いた精密な計算の結果、非共鳴過 程の寄与が従来の現象論的取り扱いによる推定値に比べて非常に大きく現れる ことが指摘され(図7.7参照)[33]、それを取り入れた恒星進化論の予測と赤色 巨星に関する観測データとの比較が議論の的となっている[34,35]。このような最 新の理論的予測を実験的に検証するには、低エネルギーでの 3αの散乱状態を経 由する反応についての精密な実験データが必須となる。現在、そのようなデー タを取得する方法として 12 C の非弾性散乱などが検討されているが、 inclusive な 情報だけでなく exclusive、あるいは spectroscopic な情報を得ようとすると、¹²C の非束縛状態から放出される3つの α粒子をすべて同時計数する必要があり、 このような低励起エネルギーでは能動標的を用いる方法以外には有効な手段が 無い。その場合、入射ビームとして荷電粒子を用いると、それ自体が検出器に 信号を発生し、重大なバックグラウンドとなってしまうという問題がある。さ らに、陽子や α 粒子などの重イオンを入射ビームとした場合は、核力による反 応の寄与が混入するため、それらを見積もる際の系統誤差にも注意が必要とな る。それに対してガンマ線ビームは、そのような難点を伴わないため、低エネ ルギーでの3α散乱状態を探る優れたプローブとなる。

図 7.7 ヘリウム燃焼領域の温度の関数として計算された 3α 融合反応率。実線; CDCC 法によって非共鳴過程を正確に取り入れた反応率[33]、点線; 共鳴過程の みの反応率、破線[33]; 共鳴エネルギーをシフトすることによって非共鳴の効果 を近似的に取り入れた反応率[23]、一点鎖線; NACRE ライブラリによる評価値 [35]。

測定方法としては、前述の¹⁶ $O(\gamma,\alpha)$ ¹²C 反応測定と同様に、大強度ガンマ線ビームと能動標的型ワイヤーチェンバーを用いる。ただしこの場合は¹⁶O 光分解イベントの混入を避けるため、標的ガスとして CH₄ ガスを使用する。測定感度としても、¹⁶ $O(\gamma,\alpha)$ ¹²C 反応の場合と同じく重心系反応エネルギー300 keV において1 fb オーダーが期待され、非共鳴過程が重要となる領域での実験的情報が直接に得られる。

7.3 不安定核の光核反応

爆発的天体現象に伴って起きる元素合成過程には、不安定核による核反応が 本質的な役割を果たす。速い中性子捕獲過程(r過程)はそのような元素合成過 程の代表例である。超新星爆発などの何らかの爆発的天体現象に伴って、短時 間で極めて強い中性子フラックスが発生した場合、原子核がβ崩壊を起こす前 に立て続けに中性子を捕獲し、一気に重い原子核が生成される。中性子が立て 続けに捕獲されるため、経路としては図7.2に示すような中性子過剰な領域を通 ると予想される。したがって、反応過程を計算によって追跡するためには、そ れらの中性子過剰核の中性子捕獲反応率データが重要である。

一方、重力崩壊型超新星爆発の際に放出される強力なニュートリノのフラッ

クスは、中心部の原始中性子星に含まれる中性子のベータ崩壊を促進し、非常 に短時間に大量の陽子を生み出す。そのような条件下では、陽子過剰な領域を 通る速い元素合成過程が起きる可能性があり、vp- 過程と呼ばれている[36-39]。 自然界に存在する安定同位体には、原子核の安定線よりも陽子過剰側に存在す るために s- 過程や r- 過程などの中性子捕獲反応を主体とした過程では作り出 すことのできない核種が存在し、p- 核と呼ばれているが、vp- 過程は p- 核の起 源を説明する有力なシナリオとして、近年注目されている。このシナリオにお いては、陽子過剰側に分布する不安定核の陽子捕獲反応率データが重要なイン プットとなる。

不安定核による中性子捕獲反応は、ヘリウム燃焼の際の s- 過程においてもし ばしば重要となる。s- 過程の反応経路上には、不安定核種を経由する点が存在 し、そこでは β⁻ 崩壊と (n,γ) 反応との競合によって分岐が生じる。

図 7.8 は Kr-Rb-Sr 領域の s-過程経路を示している。ここで、⁸⁵Kr(基底状態) は半減期が 10.8 年と比較的長いために、中性子密度が高ければ、さらに中性子 を捕獲して ⁸⁶Kr を経由することが可能となり、最終的に ⁸⁸Sr の存在比が高まる。 したがって、観測から得られた同位体存在比をモデル計算で再現する際に、そ の同位体試料の起源となった恒星内の中性子密度をパラメータとして推定でき る[40]。一方、図 7.8 において、⁸⁷Rb は宇宙年齢に匹敵するほど長い半減期を持 っため、その崩壊も考慮してストロンチウムの同位体存在比を解析することに より、その試料が生成された s-過程イベントの年代を推定出来る。これらの解 析にあたっては、安定核だけでなく、⁸⁵Kr、⁸⁵Kr^m、⁸⁶Rb、⁸⁷Rb などの不安定核 の中性子捕獲断面積データが必要となる。

上記のような不安定核による (n,γ) 反応、(p,γ) 反応について実験的情報を得 ようとする場合、何らかの手段によって不安定核標的を作成する必要があるが、 標的の密度はいずれにせよ小さいため、大強度・高輝度の中性子または陽子の ビームを照射しなければならない。ところが中性子に関しては、元素合成時に 主要な寄与をあたえる 1keV~100keV のエネルギー領域で十分な輝度を持つ中 性子源は実現されておらず、また陽子については大電流ビームを照射した場合 の拡散やスパッタリングによる標的の損傷が問題となる。これに対して、逆反 応である (γ,n)、(γ,p) 反応に着目すると、レーザー逆コンプトン法を採用するこ とによって十分輝度の高い入射ガンマ線を利用することができ、またガンマ線 が電荷を持たないため標的損傷の問題も回避できる、という利点がある。この ような実験の可能性を示すために、以下では希土類領域の不安定核による (γ,n) 反応を例として取り上げる。

図 7.8 Kr-Rb-Sr 領域の s- 過程経路図

10⁹ K 以上の高温環境を仮定する従来の r- 過程シナリオが 「熱い r-過程」と呼 ばれる[41]のに対して、最近、4×10⁸ K 程度の低温でも太陽系内試料から得られ ている r-元素存在比が説明可能であることが見出され、「冷たい r- 過程」のシ ナリオが提唱されている[39]。この「冷たい r- 過程」シナリオでは、温度が低 いために鉛付近の重い元素の生成効率が上がらず、最近、銀河ハロー中に見つ かっている鉛の存在比が非常に少ない恒星の存在を説明できるという長所があ り、注目されている。また、同じく温度が低いために、反応の経路は (n.y) 反応 と (y,n) 反応の平衡よりもむしろ (n,y) 反応とβ 崩壊の競合条件によって決定 され、したがって (n.y) 反応断面積の絶対値がそれぞれの核種の生成量に大きく 影響するという特徴がある。この傾向は希土類元素ピークの近傍で特に顕著で あり、逆に希土類ピークでの元素存在比の観測値と計算値を比較することで、 シナリオの妥当性を検証することができる。この時、希土類に属する不安定核 の keV 領域での中性子捕獲断面積データが必要とされる。逆反応である光核反 応を通じてそれらの断面積に関する情報を得ることを考えると、まず不安定核 標的の可能性については、現在理化学研究所の RIPS 装置において、²²Na など の不安定核を直径1 cm 程度のスポット内に毎秒 10⁸ 個の強度でインプラントす る技術が実用化されており、また大阪大学核物理研究センターでは、毎秒 10⁸ 個の不安定核を直径数十 um の範囲内に打ち込む技術の開発が始まっている [42]。これらのノウハウを活かして、半減期 T_{1/2} [s] の不安定核を R [個/s] の強 度で面積Aの範囲内に打ち込み、半減期と同じ時間の蓄積を行なったとすると、 打ち込まれた不安定核の蓄積量は $0.72 \times R \times T_{1/2}$ [個] となる。これを、同じ面積 Aにコリメートされた、強度 I_γ [個/s] のガンマ線ビームで照射した場合、ルミノ シティレは

$$L = \frac{0.72 \times R \times T_{1/2} \times I_{\gamma}}{A} \tag{2}$$

で与えられる。たとえば $R = 10^8$ [個/s]、 $I_{\gamma} = 10^{10}$ [個/s]、A = 0.03 [cm²] の場合、

$$L = 2.4 \times 10^{-5} \times (T_{1/2} \text{ [s]}) \text{ [barn}^{-1} \text{s}^{-1} \text{]}$$
(3)

であり、反応レートに換算した測定感度の下限を毎秒 1 イベントとすると、半 減期が 5 日、予想される (γ,n) 断面積が 1mb 程度までの測定が可能となる。希 土類元素の領域では、¹⁴⁷Nd、^{143~148}Pm、^{145,146,151}Sm、^{145~150,152,154~156}Eu、^{148~153}Gd、 ^{135~158,160,161}Tb、^{154,159}Dy、¹⁶⁶Ho、¹⁶⁹Er、^{167,168,170,171}Tm、^{169,175}Yb、^{171~174,177}Lu、 ^{172,174,175,181,182}Hf、^{179,182,183}Ta、^{181,185,188}W、^{183,184,186,187}Re、^{185,191,194}Os、^{189,190,192,194}Ir、 などが測定対象に入ると期待される。

7.4 ニュートリノ・原子核反応とr過程元素合成

Ⅱ型(重力崩壊型)超新星爆発では、コアの縮退の際の電子捕獲によって莫 大な量のニュートリノが発生し、爆発前の星が持っていた約10⁵³ erg の重力ポテ ンシャルエネルギーの98~99%を担って遠方へ飛び去ると考えられている。これ らのニュートリノは、コア周辺の軽核を破砕し、r 過程のための中性子を生成す る[43-46]とともに、外層においてはそこに含まれる原子核と反応し、本来の同 位体存在比を修飾すると考えられる[47,48]。したがって、これらの軽核、重核と ニュートリノとの核反応率データは、r 過程元素合成のモデルが与える同位体組 成比の予想値と観測値を照らし合わせる上で必要不可欠な情報である。

実際のニュートリノビームを用いた核反応断面積測定は、これまでのところ KARMEN 実験[49,50]において 12 C、 13 C、 56 Fe などの安定核を標的として実施さ れているが、r 過程に関わる D、 3 He、 4 He 等の軽核および重核、特に不安定核 については測定された例がなく、断面積が極めて小さいために将来的にも実現 の見込みは立っていない。

ここで、光核反応を引き起こす電磁相互作用演算子は、Eq. 4,5 に示すように、 弱い相互作用の中性カレント演算子と相似な形を持つため、弱中性カレントに 対する原子核の応答を、光子を用いてシミュレートし、調べられる。 弱中性カレント演算子;

$$T_{10LJ}^{W} = g_{10LJ}^{W} \cdot \tau_{3} \sqrt{2} \cdot \left[i^{L} r^{L} Y_{L} \right]_{J}$$

$$T_{11LJ}^{W} = g_{11LJ}^{W} \cdot \tau_{3} \sqrt{2} \cdot \left[i^{L} r^{L} Y_{L} \times \sigma \right]_{J}$$
(4)

電磁相互作用演算子;

$$T_{10LJ}^{EM} = g_{10LJ}^{EM} \cdot \tau_3 \sqrt{2} \cdot \left[i^L r^L Y_L \right]_J$$

$$T_{11LJ}^{EM} = g_{11LJ}^{EM} \cdot \tau_3 \sqrt{2} \cdot \left[i^L r^L Y_L \times \sigma \right]_J$$
(5)

なおここで、 g^{W} 、 g^{EM} はそれぞれ弱い相互作用、電磁相互作用の結合定数、L、 J は遷移の際の軌道角運動量および全角運動量変化、rは動径座標、 Y_L は角運動 量量子数 Lを持つ球面調和関数、 σ はスピン演算子である。

現実的な戦術としては、ニュートリノ-原子核反応率に関して信頼できる理論 計算の手法を開発し、同じ手法を用いて相似な光核反応断面積を計算し、実験 で得られる断面積との比較によって理論計算の妥当性を検証する、という手順 が考えられる。特に、重力崩壊型超新星爆発で放出されるニュートリノのエネ ルギー分布は 図 7.9 に示すようにν_e、ν⁻eについては 5~25 MeV、ν_{μτ}、ν⁻_{μτ}につ いては 10~35 MeV と予想されており、移行運動量として 0~80 MeV/c の範囲での 実験的情報が重要である。

図 7.9 重力崩壊型超新星爆発で放出される ニュートリノの典型的なエネルギー分布

7.5 まとめ

光核反応は、宇宙におけるさまざまな元素合成過程のいずれにおいても重要 な役割を果たしており、したがって高精度な光核反応断面積データの取得は、 元素の起源を定量的に解明する上で必須である。エネルギー幅 0.1%程度、強度 10¹⁰/s 程度の高性能な単色ガンマ線ビームが実現すれば、ガモフエネルギーに 迫るエネルギー領域での断面積測定や、不安定核を標的とした測定実験、ニュ ートリノ核反応断面積の決定に有用な原子核のスピン・アイソスピン応答の調 査など、既存の量子ビーム源では困難であった実験が可能になる。また、その ような新しい実験によって収集される核データは、次世代の天文観測装置から 提供される観測データとともに、宇宙核物理研究を新段階に進めるブレイク・ スルーを与える。

参考文献

[1] R.A. Alpher, H.A. Bethe and G. Gamow, Phys. Rev. 73, 803 (1948).

[2] E.M. Burbidge, G.R. Burbidge, W.A. Fowler, and F. Hoyle, Rev. Mod. Phys. 29, 547 (1957).

[3] E. Anders and N. Grevesse, Geochim. Cosmochim. Acta, 53, 197 (1989).

- [4] K. Lodders, ApJ 591, 1220 (2003).
- [5] C. Sneden et al., ApJ 566, L25 (2002).
- [6] A. Frebel et al., ApJ 658, 534 (2007).
- [7] W. Aoki et al., ApJ 660, 747 (2007).
- [8] S. Honda, W. Aoki, T.C. Beers and M. Takada-Hidai, ApJ 730, 77 (2011).
- [9] M.C. Weisskopf et al., ApJ 536, L81 (2000).
- [10] A.S. Wilson and Y. Yang, ApJ 568, 133 (2002).
- [11] Y. Uchiyama et al., Nature, 449 576 (2007).
- [12] P.S. Cowperthwaite et al., ApJ 752, L21 (2012).
- [13] D.N. Spergel et al., WMAP Collaboration, ApJ Suppl. 170, 377 (2007).
- [14] N. Aghanim et al., Plank Collaboration, arXiv:1204. 2743
- [15] Giant Magellan Telescope Project homepage; http://www.gmto.org
- [16] Thirty Meter Telescope Project homepage; http://www.tmt.org
- [17] Telescope Array Project homepage; http://www-ta.icrr.u-tokyo.ac.jp
- [18] Large-scale Cryogenic Gravitational wave Telescope Project homepage; http://gwcenter.icrr.u-tokyo.ac.jp
- [19] Laser Interferometer Space Antenna Project homepage; http://lisa.nasa.gov
- [20] Ice Cube Project homepage; http://icecube.wisc.edu

- [21] K. Abe et al., http://arxiv.org/abs/1109.3262v1
- [22] M. Hashimoto, Prog. Theor. Phys. 94, 663 (1995).
- [23] K. Nomoto, F.-K. Thielemann and S. Miyaji, Astron. Astrophys. 149, 239 (1985).
- [24] L.R. Buchmann and C.A. Barnes, Nucl. Phys. A777, 254 (2006).
- [25] P. Dyer and C.A. Barnes, Nucl. Phys. A233, 495 (1974).
- [26] A. Redder et al., Nucl. Phys. A462, 385 (1987).
- [27] R.M. Kremer et al., Phys. Rev. Lett. 60, 1475 (1988).
- [28] J.M.L. Ouellet et al., Phys. Rev. C54, 1982 (1996).
- [29] G. Roters, C. Rolfs, F. Strieder and H. Trautvetter, Eur. Phys. J. A6, 451 (1999).
- [30] R. Kunz et al., Phys. Rev. Lett. 86, 3244 (2001).
- [31] Assunção et al., Phys. Rev. C73, 055801 (2006).
- [32] H. Makii et al., Phys. Rev. C80, 065802 (2009).
- [33] K. Ogata, M. Kan and M. Kamimura, Prog. Theor. Phys. 122, 1055 (2009).
- [34] A. Dotter and B. Paxton, Astron. and Astrophys. 507, 1617 (2009).
- [35] T. Suda, R. Hirschi and M.Y. Fujimoto, ApJ 741, 61 (2011).
- [36] C. Fröhlich et al., ApJ. 637, 415 (2006).
- [37] C. Fröhlich et al., Phys. Rev. Lett. 96, 142502 (2006).
- [38] J. Pruet, R.D. Hoffman, S.E. Woosley, R. Buras and H.-Th. Janka, ApJ 644, 1028 (2006).
- [39] S. Wanajo, ApJ 647, 1323 (2006).
- [40] D.D. Clayton, ApJ 139, 637 (1964).
- [41] K. Kratz, J. Bitouzet, F.-K. Thielemann, P. Moeller and B. Pfeiffer, ApJ 403, 216 (1993).
- [42] A. Tamii, private communication.
- [43] S.E. Woosley and R.D. Hoffman, ApJ 395, 202 (1992).
- [44] S.E. Woosley et al., ApJ 433, 229 (1994).
- [45] K. Otsuki, H. Tagoshi, T. Kajino and S. Wanajo, ApJ 533, 424 (2000).
- [46] T. Kuroda, S. Wanajo and K. Nomoto, ApJ 672, 1068 (2008).
- [47] Y.-Z. Qian, W.C. Haxton, K. Langanke and P. Vogel, Phys. Rev. C55, 1532 (1997).
- [48] T. Yoshida et al., Phys. Rev. Lett. 96, 091101 (2006).
- [49] B. Armbruster et al. (KARMEN Collaboration), Nucl. Phys. A629, 75 (1997).
- [50] B. Armbruster et al. (KARMEN Collaboration), Phys. Lett. B423, 15 (1998).

8 超新星ニュートリノの解明

要旨

宇宙最大のニュートリノ源は超新星爆発である。超新星爆発ではニュートリ ノによって希少な同位体が生成され、その痕跡が太陽組成や始原的隕石に記録 されている。逆に、これらの痕跡から超新星爆発時に発生するニュートリノの エネルギースペクトルを知ることが可能であり、天体観測や始原的隕石の分析 によって超新星ニュートリノの振動現象を克明に知ることができる。超新星ニ ュートリノ研究の現状と、大強度ガンマ線を用いた研究の可能性について紹介 する。

8.1 超新星ニュートリノとは

ニュートリノ物理学において、ニュートリノ検出器とニュートリノ源が重要 なツールである。ニュートリノ検出器はスーパーカミオカンデのように極めて 巨大なものが完成しており、ほぼ限界に近い。一方、人類はニュートリノの本 質を探るために、太陽、原子炉、粒子加速器など次々と強力なニュートリノ源 を求めてきた。その中には太陽などの自然現象も含まれる。したがって、人類 が利用できる最大のニュートリノ源を用いて研究することが理に適っている。 我々の住む宇宙での最大のニュートリノ源は、重力崩壊型超新星である。太陽 より8倍以上の質量を持つ恒星は、その寿命の最後に超新星爆発と呼ばれる大 爆発を引き起こしてその進化を終える。大質量星の進化の過程で、He から Fe に至るいくつかの元素が熱核反応で生成され、図 8.1 のような層状の構造をとる。 一般に、中心部から、鉄コア、Si 層、O/Ne 層、C/O 層、He 層、H 層となる。こ の中心部の鉄コアが自らの重力で収縮して原始中性子星を形成し、陽子が電子 を捕獲して中性子へと中性化する際に放出される電子型ニュートリノに続いて、 中性子星内部に形成される縮退したニュートリノ光球から膨大な数の3世代の 熱的ニュートリノと反ニュートリノが放出され、エネルギーを輸送すると同時 に超新星爆発を引き起こす。外層では、ニュートリノが既存の原子核と相互作 用して(図 8.2 参照)、異なる種類の原子核を生成するのがニュートリノ元素合 成であり、この過程をニュートリノ過程と呼ぶ。

ニュートリノ過程は、従来の宇宙物理学では起源を明らかにできなかったい くつかの希少な核種の起源として、1990年に S.E. Woosley によって提唱された [1]。2005年以降に再び脚光を浴び、現在世界中で精力的に研究が進められてい る。

8.2 ニュートリノー原子核相互作用

図 8.2 ニュートリノと原子核との相互作用による新しい同位体生成過程の模式図

ニュートリノ元素合成過程を研究する上で、i) 超新星爆発モデル、ii) ニュー トリノのエネルギースペクトル、iii) ニュートリノ-原子核反応率が重要な物理 量である。図 8.2 のように、ニュートリノ-原子核反応は、大きく 2 つに分ける ことができる。(v, v'p) や (v, v'n) 反応などの中性カレント反応と、(ve, e⁺n)、(ve, e⁺n) などの荷電カレント反応である。中性カレント反応では、全ての種類のニ ュートリノが反応を起こし、荷電カレント反応は電子(反電子)型ニュートリノが引き起こす。図 8.3 には、¹⁸⁰Ta を生成する 2 つの反応を示す。6 種類の電子型・ミュー型・タウ型ニュートリノおよびそれらの反粒子との中性カレント反応による衝突で¹⁸¹Ta から中性子が剥ぎ取られ、¹⁸⁰Ta が生成される。一方、荷電カレント反応では電子型ニュートリノが吸収されることによって、¹⁸⁰Hf の中性子の一つが陽子に変換され、¹⁸⁰Ta が生成される。

図 8.3 に示すように、ニュートリノが原子核と相互作用を起こすと、複合核の 励起状態を形成する。この励起エネルギーは数 MeV から数十 MeV と高い。し たがって、ニュートリノ-原子核反応率は複合核の励起状態の状態密度等に強い 影響を受ける。そのため、ニュートリノ-原子核反応率は、原子核の個性の影響 を強く受け、既存の計算では核種が異なると反応率が 10 倍以上変わることが示 されている。

ニュートリノ-原子核相互作用の反応率は非常に小さく、現在まで¹²Cを除い て直接測定はなされておらず、近い将来に系統的に測定される見込みもない。 そのため、多種多様な核種に対する反応率は、個々の核種の原子核構造を考慮 した理論計算によって予測する必要がある。

既に Woosley 等の研究をはじめ、ニュートリノ元素合成の理論計算の結果は 発表されていたが、ニュートリノ反応率の計算方法の詳細は公表されていなか った。その中で国立天文台を中心とする研究グループで独自の計算を開始した。 軽元素の生成に関わるニュートリノ-原子核反応率を殻模型によって計算し[2]、 鉄コア近傍で起こると予想されるニュートリノ反応および電子捕獲反応に関し ても鉄領域の原子核に対する反応率を同様に計算した[3,4]。

軽元素、鉄近傍核を除く原子核に対するニュートリノ反応は殻模型では計算 できないので、QRPA モデルによる計算を開始した。まず、¹²C、⁵⁶Fe で QRPA モデル計算を殻模型計算と比較して妥当性を確認した後に[5]、¹³⁸La と ¹⁸⁰Ta に ついて[6]、また⁹²Nb についても[7]計算した。

8.3 ニュートリノによる軽元素の生成

我々は、天体観測と銀河物質の化学進化モデルから予測される¹¹B/¹⁰B 同位体 比が一致しないという問題を解決するために、超新星爆発のニュートリノ元素 合成による軽元素生成量を計算する本研究を開始した。⁷Li と¹¹B の生成量がニ ュートリのエネルギースペクトルに大きく依存することを示し、観測値を再現 するためには従来の予測とは異なる温度を持つエネルギースペクトルが必要で あることを示した。この研究結果では、ミュー型及びタウ型ニュートリノ(反 ニュートリノも含む)の平均温度は 4.8~6.6MeV の領域であることを示した(図 8.4) [8]。

さらに、原始中性子星から発生したニュートリノが MSW 効果によってフレー バーを変える振動現象を起こし、電子型ニュートリノとその他のニュートリノ のエネルギースペクトルが変化することを見出した。MSW 効果の高密度共鳴に よるニュートリノ振動は、ヘリウム層と炭素/酸素層の境界付近で発生する。Li とBは主にこのニュートリノ振動現象が起きた後に外側の層で生成されるため、 ニュートリノ振動の影響を強く受けている。これらのニュートリノ生成核種が、 素粒子物理学の実験手法だけから決定することが難しい未知のニュートリノ振 動パラメータ(混合角 θ₁₃と質量階層)に強く依存することを明らかにし、同時 に、これらのニュートリノ振動パラメータの大きさを定量的に評価するための 天体観測を提唱した[9]。

図 8.4 計算に用いたニュートリノのエネルギースペクトル

⁶Li/⁷Li 同位体組成比の天体観測により、ニュートリノ振動パラメータに制限 を与えることを提案した。日本が誇るすばる望遠鏡高分散分光器に、星像を分 割して集光した後にスリット上に再配置することで分解能を上げるイメージス ライサー装置を導入した。このイメージスライサーによって、銀河系初期に形 成された [Fe/H]<-3 の金属欠乏星で Li を観測した[10]。金属欠乏性における Li の系統的な観測の後に、太陽から最も遠い星間ガス中の Li の同位体組成を測定 した。現在、イメージスライサーの大型化を進めている最中である。

ニュートリノ元素合成の結果が現れると期待される天体のひとつが、超新星 爆発の影響を受けている可能性のある星間ガス雲である。星間ガス雲の組成は、 その背後にある星を分光観測し、ガス雲によって生じる吸収スペクトルを解析 することにより測定することができる。興味深いことに、超新星爆発の影響を 受けている可能性のある分子雲のひとつ (ρ Oph 分子雲)では、他の星間ガス雲 に比べて⁶Li⁷Li が有意に低いという結果が得られている[11]。これは背景の星一 つのみに対する測定であり、ニュートリノ元素合成により⁷Li の増大が起きたこ とによると結論づけるにはデータが不足している。本研究では、この分子雲の 方向の星を多数観測し、⁶Li⁷Li 比が低いことを確認するとともに、分子雲内で 同位体比の分布を測定する。これにより超新星の⁶Li⁷Li 比の影響が確認できれ ば、⁷Li の超新星ニュートリノ元素合成を初めて観測的に確認したことになる。

図 8.5 超新星爆発の高温下における Ta-180 の基底状態と 核異性体の変換を示す模式図

2010年以前には⁷Li、¹¹B、¹³⁸La、¹⁸⁰Taの4核種がニュートリノ核種として知られており、鉄より重い領域では¹³⁸Laと¹⁸⁰Taの2核種しか知られていなかった。しかし、既存の元素合成モデル計算では、¹³⁸Laと¹⁸⁰Taの2核種の太陽組成を系統的に説明することができなかった[1,12]。その理由は、¹⁸⁰Taのユニークな原子核構造に起因する。¹⁸⁰Taの基底状態は8時間でβ崩壊するが、75keVの励起状態にあるアイソマーは10¹⁵年以上の半減期を有する。この2つの状態は、超新星爆発の高温下では(γ 、 γ)反応で互いに遷移する(図 8.5 参照)。爆発初期の段階で温度はkT=300keV に達して、¹⁸⁰Taの励起状態は熱平衡状態にある。 温度が秒単位で急激に下がる段階で熱平衡は破れ、基底状態とアイソマーは一定の割合に至るはずである。準安定なアイソマーの割合を求めるには、時間変化を解く必要があったのであるが、先行する研究では、時間変化を解くことができず、突然フリーズアウトするという非現実的なモデルを採用するか、計算を放棄していた。

我々は¹⁸⁰Taの基底状態とアイソマーを異なる核種とみなすモデルで時間変化を解いた。新しい理論計算の結果、超新星爆発の温度が十分に下がった時点で、全量を1とした場合に核異性体が0.39の割合で生き残ることが判明した。さらに、この値が超新星爆発の爆発エネルギー、最高温度、冷却の平均時間等の物理条件には強く依存しないことも判明した。そこで、A. Heger 等によってニュートリノ元素生成モデルで計算された¹⁸⁰Taの推定量(基底状態+核異性体の総和)に、アイソマー生成比0.39を掛けてアイソマーのみの量を求めたところ、

太陽系における推定量と実在量をほぼ再現することが判った[13]。この時のニュ ートリノ温度は、電子型と反電子型ニュートリノが約 4MeV、その他のニュート リノが約 6MeV でなければならない。

ニュートリノのエネルギースペクトルは、超新星の爆発メカニズムに直結している重要な物理量である。しかし、これまでエネルギースペクトルの直接測定は超新星 1987A で限定的に行われたのみであり、全面的に理論研究に依存しているのが現状である。この研究では、太陽組成などの値から従来より強い制限を与える。この結果は、2010 年 5 月 28 日の科学新聞 1 面トップで報道され、2010 年 8 月号の日経サイエンスでも紹介された。

8.5 ニュートリノ天文学への寄与

この様なニュートリノ元素合成過程の研究は、素粒子物理学や宇宙物理学等 の広い分野に波及効果がある。これまで、理論モデルによって超新星爆発にお けるニュートリノのエネルギースペクトル(平均エネルギー)は評価されてき た。一方、ニュートリノ元素合成モデルにおける評価は、太陽組成、隕石組成、 天体観測で得られた値から求められているので、観測・測定に基づいた値であ り、より信頼性が高いと考えられている。

超新星爆発で発生するニュートリノの平均エネルギーは、スーパーカミオカ ンデ等で期待される次の超新星爆発のニュートリノ観測の予想に役立つ。前回、 1987年に大マゼラン雲に現れた超新星 1987Aからのニュートリノを(スーパー カミオカンデより小型の)カミオカンデにおいて人類史上初めて捉えることに 成功し、小柴昌俊博士のノーベル賞につながった。銀河系内で 20年に1回の頻 度で超新星が発生すると推定されており、次の超新星ニュートリノの観測によ って、より詳細な超新星爆発の理解が進むものと期待されている。スーパーカ ミオカンデで捉えることができるのは、主に電子型ニュートリノであり、ニュ ートリノ補足確率は、電子型ニュートリノのエネルギーに依存する。我々のニ ュートリノ過程の研究によって、電子型ニュートリノの平均エネルギーが推定 されており、補足確率をより正確に予測できる。

8.6 素粒子の謎・ニュートリノ振動問題へのインパクト

ニュートリノには、電子型・ミュー型・タウ型とそれらの反粒子の 6 種類が存在する。これまでの素粒子物理学の研究によって、これらのニュートリノは極めて軽いけれども異なる 3 種類の質量を持つニュートリノの線形結合で表現でき、真空中や物質中を通過する間に互いに入れ替わる「ニュートリノ振動」

と呼ばれる現象が存在することが判明している。超新星爆発で誕生する原始中 性子星から発生したミュー型・タウ型ニュートリノが、外層に到着する短い時 間にニュートリノ振動によって電子型ニュートリノに変わることが予想されて いる。ミュー型・タウ型ニュートリノと、電子型ニュートリノではニュートリ ノ-原子核相互作用の仕方が異なる。主に O/Ne 層で生成される¹³⁸La や¹⁸⁰Ta は ニュートリノ振動の影響を受けず、より外側の C/O 層や He 層で生成される軽元 素はニュートリノ振動の影響を受けると推定される。したがって、重元素と軽 元素のニュートリノ元素合成を系統的に比較研究することで、ニュートリノ振 動の影響を定量的に評価することができる。

爆発初期に形成された原始中性子星の内部に、電子型・ミュー型・タウ型の ニュートリノとこれらの反粒子が一旦補足され、ニュートリノ光球が作られる。 やがてニュートリノは高温・高密度状態にあるハドロン物質と散乱を繰り返し て拡散を始め、外層に放出されてエネルギーを輸送すると同時に超新星爆発を 引き起こす。ニュートリノ光球近傍では、v-v 散乱による多体量子効果によって フレーバー間の振動が発生することが近年になって理論的に予言された。これ は、電子との相互作用によって発生するフレーバー間の振動(MSW 効果)とは 全く異なる。超新星内部での 6 種類のニュートリノのエネルギースペクトルを 知ることができれば、爆発メカニズムだけでなく、地上実験では不可能な v-v 散 乱率などの基礎物理量を知ることができる。

8.7 始原的隕石中の同位体比異常の探索

過去には、隕石中の同位体比組成は地球上の物質と同じで均一であると考え られていたが、近年の測定技術の発展により、1/10000の精度で同位体比異常が 発見され、その組成から起源天体を同定することが可能になった。超新星内層 のニュートリノの効果を探求する。実は、Laに同位体比異常が1例だけ測定さ れている[14]。この結果は、太陽系に存在する隕石中のLaの同位体比異常が元 素合成過程に起因することを示唆しているが、他の鍵となる元素との相関が判 らないため、詳細は不明である。今後、Laと他の超新星爆発起源の元素との同 位体比異常の相関の有無が判明してゆくと期待される。

8.8 レーザーコンプトン散乱ガンマ線による超新星ニュートリノ研究

このように超新星ニュートリノを研究する意義は重大であり、次世代のレー ザーコンプトン散乱ガンマ線は極めて重要な役割を担うと考えられている。既 に述べたように、ニュートリノ元素合成において重要な物理パラメータのひと つは、ニュートリノ-原子核相互作用である。ニュートリノ-原子核相互作用は、 ガモフ・テラー型遷移と密接に関係しており、超新星ニュートリノ元素合成で は閾値から数十 MeV のエネルギー領域が全反応のうち 40~60 % 程度を占める。 したがって、ガモフ・テラー型遷移の強度が最も重要であり、スピンとパリテ ィーが1+の状態への遷移(偶偶核の場合)、M1 遷移強度、ないし1+の状態 密度は理論計算に非常に有益な束縛条件を与える。同時に、理論計算で他の型 の遷移強度を知る必要もある。

別項目で記述されているように、直線偏光したガンマ線の核共鳴蛍光散乱に よる角度分布を計測することで、E1 遷移と M1 遷移を明瞭に識別し、E1 遷移強 度と M1 遷移強度を個別に求めることができる。そのためレーザーコンプトン散 乱ガンマ線は非常に有効なツールである、しかし、中性子分離エネルギー以上 では中性子の放出が主な崩壊チャンネルになるため、核共鳴蛍光散乱による測 定法はほとんど行えない。このエネルギー領域で、原子核に普遍的に現れる特 徴的な現象の一つが、E1 遷移で励起される巨大双極子共鳴 (GDR) である。GDR のピークエネルギーは中重核では中性子分離エネルギーより高い15~20MeV に 存在している。このエネルギー領域では、どのような実験でも GDR が強く観測 されてしまうため、この領域の M1 (磁気双極子) 遷移強度はほとんど計測され ておらず、存在するはずの M1 強度が高励起状態にどの程度存在しているかは未 だに解明されていない (図 8.6 参照)。近年、直線偏光したガンマ線による中性 子の角度分布を計測することで、この領域の M1 遷移強度を測定することが提案 されており、次世代のγ線源では大規模に測定が進むと期待される。

図 8.6 巨大共鳴領域の M1 強度の概念図
参考文献

- [1] S. E. Woosley, et al., Astrophys. J. 356, 272 (1990).
- [2] T. Yoshida et al., Astrophys. J. 686, 448 (2008).
- [3] T. Suzuki, et al., Phys. Rev. C79, 061603(R) (2009).
- [4] T. Suzuki, et al., Phys. Rev. C83, 044619 (2011).
- [5] M. Cheoun, et al., J. Phys. G37, 055101 (2010).
- [6] M. Cheoun, et al., Phys. Rev. C82, 035504 (2010).
- [7] M. Cheoun, et al., Phys. Rev. C85, 065807 (2012).
- [8] T. Yoshida, et al. Phys. Rev. Lett. 94, 231101(2005).
- [9] T. Yoshida, et al. Phys. Rev. Lett. 96, 091101 (2006).
- [10] W. Aoki, et al., Astrophys. J. Lett. 751, L6 (2012).
- [11] M. Lemoine, et al., Astrophys. & Astron., 269, 469 (1993).
- [12] A. Heger, et al., Phys. Lett. B606, 258 (2005).
- [13] T. Hayakawa, et al., Phys. Rev. C81, 052801(R) (2010); ibid C82, 058801 (2012).
- [14] J. J. Shen and T. Lee, Astrophys. J. 596, L109 (2003).

9 宇宙核時計と宇宙年代学

要旨

長寿命の放射性同位体は原子核宇宙時計として、超新星爆発などのイベント が発生した年代や、太陽系の年代を知るツールとして利用されている。特にレ ニウムは超新星爆発の急速な中性子捕獲反応過程が発生した年代を計測する核 時計として知られている。宇宙時計についての研究の現状と、逆コンプトン・ ガンマ線を用いた新しい実験手法と最近の研究現状を紹介する。

9.1 核時計とは何か

原子核宇宙時計とは、²³⁸Uや¹⁸⁷Reのように太陽系(約46億年)や銀河系(約 137億年)の年齢と比較して十分長い半減期を持つ放射性同位体を用いて、親核 と娘核の比から親核が生成された年代を推定する手段である(図9.1参照)。長 寿命半減期を持つ放射性同位体を親核と呼ぶ。親核はゆっくりと放射壊変して、 娘核に変換されていく。したがって、岩石や隕石中の親核と娘核の数から,そ の比を調べれば、親核が生成された年代、ないしは岩石や隕石が生成された年 代が分かるのである。

¹⁸⁷Re は約 43 億年の半減期で¹⁸⁷Os に β 崩壊する

このような核時計は、歴史的には 1929 年にラザフォード散乱で有名なラザフ オードによって提案された[1]。当時はウランの崩壊によって生成された鉛とウ ランの区別がついていなかったが、鉛の同位体の比から、この鉛が太陽で生成 されたと仮定すると、約40億年前に生成されたと評価した。ラザフォードによって提案された核時計は、その後、岩石や隕石の組成の分析技術の進展によって、実際に銀河系、太陽系、地球の歴史などの研究へと広い分野で実際に用いられるようになった。例えば、Cayrel等は銀河系初期に形成された恒星のスペクトル分析によって初めてウランを太陽系以外で観測した[2]。このウランは²³⁸Uでありその半減期は約45億年であり、ウランの量から、この恒星が誕生した年代を評価した[2]。また、地球化学の分野では、非常に古い岩石中に含まれる¹⁷⁶Lu(半減期は約376億年)とその娘核の¹⁷⁶Hfの量から、ゴンドワナ大陸が分離した年代を評価している[3]。このように、核時計は広い分野で実際に使われている。

また近年、太陽系誕生以前に存在した恒星の元素生成を記録したプレソーラ ーグレインが発見されている。一般に、太陽系に存在する物質は、太陽系が誕 生する前の星間ガスの段階か、太陽系誕生時に非常に良く均一化され、地球上 の岩石でも隕石でも非常に良く似た組成を示す。しかし、プレソーラーグレイ ンとは、このような均一化のプロセスを経なかった直径 10µm 以下の粒子である。 SiC グレインなどが良く発見されている。このようなプレソーラーグレインの組 成は、プレソーラーグレインを生成した太陽系誕生以前に存在していた恒星に おける元素の生成過程をよく反映している。そのため、プレソーラーグレイン を精密に調べることで、その天体環境(どのような種類の恒星か、その元素が 生成された温度や電子密度などの環境)を知ることができる。実際、このよう なプレソーラーグレインの研究の分析によって、ニュートリノ風駆動型超新星 爆発(II 型)が発生した年代を評価する方法が提案されている[4]。なお、この ような核時計のうち、太陽系誕生以前に存在していた恒星の中の元素が生成さ れる時刻を記録している核時計を特に宇宙核時計と呼ぶ場合がある。

9.2 Re (レニウム) 宇宙核時計

そのような宇宙核時計の一つに¹⁸⁷Re(レニウム)とその娘核の¹⁸⁷Os(オスミウム)があげられる。図 9.2 に恒星の中で Re と Os の同位体を生成する過程を示す核図表である。縦の列は元素の種類を、横の列に同位体の質量を表す。これらの原子核のうち安定な原子核は黒いマスで、ベータ崩壊する不安定な核は青で示されている。黒いマスには核種と自然界での存在比がパーセントで示し

てあり、青いマスには核種とその半減期が示してある。また、現在の太陽系で は全ての Re のうち、62.6%が¹⁸⁷Re という高い存在比をもつ。この図に示したよ うに¹⁸⁷Re は長寿命の放射性同位体である。赤い線で示したように、435 億年と いうきわめて長い半減期で娘核の¹⁸⁷Os にβ崩壊する。

鉄より重い元素のほとんどは、rプロセスないしsプロセスで生成される。最 も安定な原子核は鉄およびその近傍の原子核である。鉄より重い原子核は燃焼 する恒星内あるいは超新星爆発の特別な環境下で合成される。重元素合成の主 な過程は、原子核が恒星内の中性子を捕獲して同じ元素だが質量数のひとつ多 い原子核へと変化する中性子捕獲反応過程と、電子・ニュートリノを放出して 同じ質量数で電荷のひとつ多い原子核へ崩壊するベータ崩壊過程である。重元 素が恒星の内部で恒星の寿命程度の時間スケールで中性子捕獲を行う過程は、 ひとつひとつの中性子の捕獲の時間間隔がゆっくりとしているため s プロセス (Slow Process) と呼ばれる。一方、巨大な恒星がその寿命を終える時、超新星爆 発を起こし、その際の膨大な圧力や熱によって重い核種までが急速に合成され る過程をrプロセス (Rapid Process) と呼ぶ。

図 9.2 の緑の矢印は r プロセスによる元素の合成過程を表し、急速な中性子捕 獲過程(r プロセス)により中性子の過剰な核が合成された後、緑の矢印に沿っ て崩壊を繰り返し安定な核にいたる。一方黄色の矢印は s プロセスにおける元素 の合成過程を表し、ひとつ中性子捕獲をしてはベータ崩壊し安定な核をたどり ながら遷移する様子を示している。図 9.2 からわかるとおり、¹⁸⁷Re は主に r プ ロセスで合成される。r プロセスが宇宙のどのような天体で発生したかは完全に 解明された問題ではないが、主に II 型超新星爆発で発生していると考えられて いる。プレソーラーグレイン中に Re と Os を測定すれば、プレソーラーグレイ ンを生成した超新星爆発の年代が判明することが指摘されている[5]。

図 9.2 Re と Os のまわりの元素合成の様子

娘核の¹⁸⁷Os は図 9.2 が示すように Re の β 崩壊の他に、恒星内でおこる s プロセス(黄色矢印)でも¹⁸⁶Os の中性子捕獲反応により合成されるのでこの点を 考慮する必要がある。そのため、Re の β 崩壊以前に存在していた¹⁸⁷Os の量を 正確に評価する必要し、¹⁸⁷Os の全収量のうち s プロセスにより合成された¹⁸⁷Os の収量を差し引く必要がある。幸いなことに 186Os は s プロセスのみで生成さ れるので、¹⁸⁶Os の量から¹⁸⁷Os の s プロセスで生成される量を評価することが できる。恒星内の環境下での s プロセスによる¹⁸⁶Os と¹⁸⁷Os の数を N_{s,186}、N_{s,187} とし、中性子捕獲断面積を恒星内の温度による中性子のエネルギー分布で平均 化 し た 中 性 子 捕 獲 率 (MACS) を < σ >₁₈₆ 、 $\langle\sigma$ >₁₈₇ と す る と 、 N_{*s*,186} < σ >₁₈₆ = N_{*s*,187} < σ >₁₈₇ という関係が良く成り立つことが知られている。 ここで ¹⁸⁶Os は s プロセスでのみ合成されるので、¹⁸⁶Os の恒星内での存在比は

ここで Os は s クロビス COみ合成されるので、 <math>Os の恒星内 CO存在比は現在の存在比と同じであると近似できる。したがって、 $N_{s,187}$ を決定するには < σ >₁₈₆、< σ >₁₈₇を実験的にきめればよいことがわかる。

中性子捕獲率<5>186を実験的に評価するため、低エネルギーの中性子ビームを 用いた実験が行われている[6,7]。しかしながら、この宇宙時計には、¹⁸⁷Os の第 一励起状態の励起エネルギーが非常に低いことに起因する不確定性があること が知られている。図 9.3 の励起準位図に示すように、¹⁸⁷Os は 9.8 keV という原子 核としては非常に低い励起エネルギーに第一励起状態を持ち、この状態は恒星 内の高温度(kT=30 keV 程度)の環境により高い確率で熱的に励起されているた め、s プロセスによる中性子捕獲率を算定するには基底状態だけでなく、の励起 状態を経由する過程も考慮する必要がある。しかしながら、2.3 ns という非常に 短い寿命の励起状態からの中性子捕獲断面積を測定することは事実上不可能で あるため、この励起状態の寄与の算定には何らかのモデル計算に頼らざるをえ ない。近年の計算によるとこの励起状態を経由することによる中性子捕獲率の 補正係数は 0.79 から 0.83 と見積もられており、時間測定の最も大きな誤差の要 因となっている。

図 9.3¹⁸⁷Os と¹⁸⁹Os の低励起状態

9.3 レーザー逆コンプトン散乱γ線による実験

¹⁸⁷Os の中性子捕獲の反応率は、その逆反応である ¹⁸⁸Os の光核分解反応から 推定することもできる。ただし、通常の逆反応の場合、詳細釣り合いの関係が 成り立ち、正、逆反応の反応率は一対一で対応がつくが、本研究で対象とする 中性子捕獲反応と光核分解反応では複数の中間状態を経由して終状態にたどり 着くため、反応率は一対一では対応せず、Hauser-Feshbach (HF)の複合核理論に 基づく統計モデルによる計算により正、逆両反応断面積を比較することが必要 である。近年このような観点から行われた (yn)反応によりその逆反応である中 性子捕獲率を決定した実験には文献[8]などがある。しかし依然として ¹⁸⁷Os の第 一励起状態の寄与の不確定性はのこっている。

既に述べたとおり、恒星内での¹⁸⁷Os の収量を正確に知るためには、¹⁸⁷Os の 第一励起状態の中性子捕獲断面積を決定する必要がある。このため、中性子捕 獲の逆反応である¹⁸⁸Osの光核分解反応の反応断面積をs プロセスに寄与する反 応閾値近傍で測定することを提案する。さらに中性子崩壊により¹⁸⁷Os の基底状 態へ直接崩壊するのか、9.8 keV の励起状態へ崩壊するのかを識別するため中性 子の偏極度を測定する。分離の原理はいたってシンプルである。円偏光したガ ンマ線をもちい、¹⁸⁸Os の光核分解反応を測定し、生じる中性子の偏極方向が入 射ガンマ線に平行か反平行かを測定する。もし¹⁸⁷Os の基底状態(1/2⁻)に崩壊 したとすると生じる中性子の偏極方向は必ずガンマ線の偏光方向に対し反平行 となり、第一励起状態(3/2⁻)に崩壊した場合、偏極方向は平行、反平行で1:1 となる。したがって、実験的に得た平行と反平行の反応断面積を σ_{t1} とし、 ¹⁸⁷Os の基底状態への反応断面積を $\sigma_{g.s.}$ 第一励起状態への反応断面積を σ_* と すると、

$$\sigma_{g.s.} = \sigma_{\uparrow\downarrow} - \sigma_{\uparrow\uparrow}$$

 $\sigma_* = 2\sigma_{\uparrow\uparrow}$

となり、実験的に基底状態への反応断面積と第一励起状態への反応断面積を決 めることができる。

図 9.4 実験の模式図

9.5 中性子偏極度計

本測定の最も重要な装置は中性子偏極度計である。中性子の偏極度を測定す る原理には、中性子の進行方向を z 軸、偏極の方向を y 軸とするとき、分析に 用いる原子核により中性子が+x 方向に弾性散乱される確率と-x 方向に散乱され る確率が異なる(偏極分解能)という性質を用いる。偏極度分析に用いる原子 核として最も大きな偏極分解能を持つことが知られる⁴He ガスを用いる。文献 [9]によると、300 keV の偏極中性子に対し、⁴He は散乱角 30 度で約 0.3 の偏極分 解能を持つ。右に偏極度計をガンマ線の進行方向上流からみた模式図を示す。 中央にターゲットとなる¹⁸⁸Os を置く。円偏光したガンマ線は紙面に垂直に入射 する。⁴He の高圧ガスを充填したセルをターゲット周りに配置し、さらに ⁴He に より散乱された中性子を検出する中性子検出器を配置する。中性子検出器はポ リエチレンの中性子減速材とその中に埋め込まれた³He ガスを充填した比例計 数管からなる。中性子検出器の間にはターゲットから生じた中性子を直接見込 まないよう熱中性子の吸収断面積が非常に大きいボロンをドープしたポリエチ レンのシールドを配置する。中性子の偏極度は図 9.5 に示した A、B の測定器で 検出した中性子の数をそれぞれ N_A、N_B とすると、平行、反並行断面積 $\sigma_{\uparrow\uparrow}$ 、 $\sigma_{\uparrow\downarrow}$ の非対称性は、

$\frac{\sigma_{\uparrow\uparrow} - \sigma_{\uparrow\downarrow}}{\sigma_{\uparrow\uparrow} + \sigma_{\uparrow\downarrow}} = \frac{N_A - N_B}{N_A + N_B} \frac{1}{A \cdot P}$

とあらわされる。ここで P はガンマ線の円偏光度で、本研究で用いるガンマ線 源は 90%以上のきわめて高い偏光度が期待できる。A は測定器全体の有効偏極 分解能で、素過程である ⁴He と中性子の弾性散乱の偏極分解能を入力として、 ガスセルによる多重散乱の効果や、中性子検出器の検出効率、検出器間のクロ ストークなどを詳細に中性子輸送のシミュレーションコードによって評価する 必要がある。ガンマ線生成の方法、中性子検出器の動作原理は本研究と同じで ある。本研究ではあらたに中性子の偏極度を測定するため ⁴He での二回散乱を 測定する機構を付加する。

図 9.5 中性子偏極度計の模式図(左)と試作品(右)

参考文献

- [1] E. Rutherford, Nature, 123, 313 (1929).
- [2] R. Cayrel, et a., Nature, 409, 691 (2001).
- [3] Kemp, Nature, 439, 580 (2006).
- [4] T. Hayakawa, Phys. Rev. C77, 065802 (2008).
- [5] T. Hayakawa, Astrophys. J. 628, 533 (2005).
- [6] M. Segawa, et al., Phys. Rev. C 76, 0222802 (2007).
- [7] M. Mosconi, et al. Phys. Rev. C 82, 015802, (2010).
- [8] T. Shizuma, et al. Phys. Rev. C 72, 025808, (2005).
- [9] TH. Stammbach and R. L. Walter, Nucl. Phys. A180, 225, (1972).

10 ガンマ線で探る原子核の構造

要旨

ERL からの大輝度 LCS ガンマ線は従来のものより 10⁵~10⁷ 倍の高強度ガンマ線 が得られる。この大強度ガンマ線を用いた光核共鳴散乱の実験は、これまでの困難性 を打破した実験を可能にし、ガンマ線が偏光していることを利用した偏極効果を観測 する実験などを通じて、宇宙物理、ニュートリノ物理に必要とされる原子核構造研究 の大きな発展が期待できる。

10.1 はじめに

光核共鳴散乱は、光の吸収と放出による核の励起及び脱励起の一連の過程で、励 起、脱励起ともに電磁気的な相互作用によって引き起こされるため、励起準位のスピ ンや遷移強度を核模型に依らずに決定できる。また、電磁波の特徴から電気的双極子 (E1)、磁気的双極子(M1)、また、微弱であるが電気的四重極子(E2)相互作用に よる核励起が観測される。さらに、共鳴散乱ガンマ線を、高純度ゲルマニウム半導体 検出器を用いて測定することにより、高エネルギー分解能での測定が可能である。し たがって、光核共鳴散乱を用いることにより、高精度でのE1、M1、E2応答を調べる ことができる[1]。

これまでの光核共鳴散乱実験は、主に制動放射光を用いて行われてきた。制動放射 光は電子加速器を用いて生成され、強度が非常に高いという特徴をもつ。しかしなが ら、制動放射光は加速電子のエネルギーに至るまでの連続エネルギーを有し、核共鳴 散乱ガンマ線スペクトルにおけるバックグラウンド計数は、光子エネルギーが減少す るに従い、指数関数的に増加する。一方、レーザーコンプトンガンマ線は、単色性、 エネルギー可変性、偏光性において優れた特徴をもち、このようなガンマ線を用いる ことにより、以下のような利点が得られる。

- ・単色性を活かした共鳴準位の選択的な励起
- ・非共鳴散乱に起因するバックグラウンド計数の軽減(S/N比の向上)
- ・ほぼ 100%の直線偏光度を利用した高精度での励起準位のパリティの決定
- ・E1 遷移と M1 遷移の分離計測

ERL レーザーコンプトンガンマ線は、従来のものよりも高輝度で、エネルギー幅 と強度が大幅に改善される。ここでは、このようなガンマ線源を用いて可能になる核 共鳴散乱実験による核構造研究について述べる。

10.2 sd 殻核の M1 遷移強度

このようなガンマ線を用いることで、原子核の魔法数と呼ばれる性質の理解につ ながる。原子核は、陽子または中性子が魔法数(2、8、20、28、50 など)で閉殻を 構成し、殻構造的に安定になる(図 10.1 に例を示す)。原子核の基本的な特徴である 魔法数や閉殻特性を明らかにすることは、核構造の理解を深める上で重要である[2]。 特に、中性子過剰領域核では、中性子数 20 における閉殻構造が消滅することが知ら れており[3]、魔法数 20 の破れの度合いやメカニズムに関心がもたれている。⁴⁰Ca は 陽子数、中性子数ともに魔法数 20 となる二重閉殻核であり、中性子過剰 Ne-Mg 核 の殻構造の進化を明らかにする上で基礎となる重要な核である[4]。

⁴⁰Ca などの二重閉殻核は、閉殻構造が良く成り立つ原子核であると考えられてい る。大規模殻模型計算によると、この閉殻構造はかなりの程度破れていることが示唆 されている。特に、⁴⁰Ca は基底状態の電磁気モーメントから良い閉殻構造をもつと考 えられるが、大規模殻模型計算から、基底状態の電磁気モーメントは閉殻構造の破れ に必ずしも敏感な量ではないことが知られている。したがって、⁴⁰Ca において純粋な 閉殻構造では禁止される基底状態からの *M*1 遷移(図 10.1)の有無及びその強度分 布を調べることにより、魔法数 20 の閉殻構造を明らかにすることができる。

⁴⁰Ca では、電子散乱実験において、励起エネルギー 10.3 MeV 付近に M1 遷移強 度が観測されている。これは $1f_{7/2}$ 軌道の混合のためであると考えられる。一方、関 与する軌道の違い ($1d_{5/2} \rightarrow 1d_{3/2}$ など) や陽子と中性子の位相の違い (isovector と isoscalar) によって、複数のM1遷移が観測される可能性がある。そこで、レーザー逆 コンプトンガンマ線を用いた光核共鳴散乱実験から、⁴⁰Ca のM1遷移の強度分布を測 定する。さらに、³⁷Cl、³⁹K、⁴⁴Ca、⁴⁶Ca、⁴⁸Ca など⁴⁰Ca 近傍核の測定を行う。⁴⁴Ca、 ⁴⁶Ca、⁴⁸Ca を調べることで、陽子数 20 の殻構造の中性子数依存性、また、³⁷Cl と ³⁹K の観測から、中性子数 20 の殻構造の陽子数依存性を明らかにする。さらに、 M1 相 互作用は核子スピンに摂動を与えることから、核力の中で、これまであまり理解が進 んでいない非中心力 (核子・軌道スピンを結合するテンソル力)を明らかにする。鉛 208 に対する最近の核共鳴散乱実験結果及び乱雑位相模型を用いた理論計算から、ア イソスカラー、アイソベクトル M1 遷移強度に対するテンソル力の役割が明らかに されている[5]。

図 10.1 陽子数または中性子数 20 領域の軌道エネルギー準位 完全な閉殻構造の場合、矢印のような遷移は禁止される。

10.3 鉄領域核の M1 遷移強度の測定

ニュートリノは超新星が爆発を起こすための衝撃波を生み出す上で重要である。 原始中性子星から放出されたニュートリノは、残留した鉄コアを透過してエネルギー を輸送する。その際、鉄近傍核に対するニュートリノ非弾性散乱反応が、ニュートリ ノの透過率に影響を与える[6]。そのため、弱い相互作用を通して生じる原子核・ニ ュートリノ散乱の反応断面積に関する正確な評価が必要になる。しかしながら、その ような散乱反応率データに不備があるため、非弾性散乱反応を考慮した研究は進展し ていない。一方、鉄近傍核の磁気双極子(M1)遷移強度の実験データを用いて、非 弾性散乱反応率の計算が行われている[7]。この計算では、⁵⁰Tiと⁵²Crの反応率に1 桁の違いがあり、原子核の個性による反応率の差が大きいことが示されている。した がって、ニュートリノ非弾性散乱の反応率計算には、個々の核種に対する信頼度の高 い M1 遷移強度データが必要であり、光核共鳴散乱実験により、鉄領域核種の M1 遷移強度データを取得する。

超新星爆発のダイナミックス計算では安定核に加えて不安定核の M1 遷移強度を 正確に予測する必要があるため、核理論模型の精密化も重要な課題である。鉄領域核 に対しては、大規模設模型計算により、原子核構造の詳細な分析が可能である。した がって、高精度の実験データを得ることにより、核理論模型の精密化ができ、信頼性 の高いニュートリノ非弾性散乱反応率の評価が可能となる。光核共鳴散乱実験では、 陽子数または中性子数が魔法数 28 となるニッケル同位体 (⁵⁸Ni、⁶⁰Ni、⁶¹Ni、⁶²Ni、⁶⁴Ni) や ⁵⁰Ti、⁵¹V、⁵²Cr、⁵⁴Fe の測定を行う。陽子数または中性子数が 28 をもつ核では、 If_{7/2} 軌道までが完全に占有され、強い M1 励起は、1f_{7/2} 軌道から 1f_{5/2} 軌道への粒子 の励起によって生じる。⁵⁰Ti、⁵¹V、⁵²Cr、⁵⁴Fe は中性子数のみが魔法数 28、ニッケル 同位体は陽子数のみが魔法数 28 をもつため、これらの核を測定することにより、M1 励起に対する陽子と中性子の寄与をそれぞれ独立に明らかにすることができる。

10.4 レーザーコンプトンガンマ線を用いた光核共鳴散乱

レーザーコンプトンガンマ線は、高エネルギー加速電子とレーザー光との相対論 的コンプトン散乱によって得られ、準単色、エネルギー可変、高偏光度などの特徴を 有する高品質のガンマ線ビームである。また、発散角~1/γの優れた指向性をもつ。 レーザーコンプトンガンマ線のエネルギー *E*_γは、電子ビームとレーザー光が正面衝 突する場合、

$$E_{\gamma} = \frac{4\gamma^2 E_{ph}}{1 + \gamma\theta + \frac{4\gamma E_{ph}}{mc^2}}$$
(1)

と表わされ、最大値は、電子ビームエネルギーの 2 乗とレーザー光のエネルギー E_{ph} との積に比例する。ここで、 θ は散乱角、 γ は電子ビームに対するローレンツ ファクター、 mc^2 は電子の静止質量 (511 keV) である。したがって、電子ビームエ ネルギーやレーザー光の波長を変えることにより、レーザーコンプトンガンマ線のエ ネルギーを調整することが可能である。

光核共鳴散乱の積分断面積 Is は、

$$I_s = \frac{2J+1}{2J_0+1} \left(\frac{\pi\hbar c}{E_\gamma}\right)^2 \Gamma_0 \tag{2}$$

と表される。ここで、 J,J_0 は共鳴準位と基底状態のスピン、 E_{γ} は励起エネルギー、 Γ_0 は共鳴幅(または、基底状態への崩壊幅)である。散乱ガンマ線の測定強度は、角 度分布 $W(\theta)$ 、立体角を含めた検出効率 ϵ を用いると、 $I_s \cdot W(\theta) \cdot \epsilon$ となる。双極子 遷移及び四重極子遷移に対する角度分布 $W(\theta)$ は次のように表わされる。

$$W(\theta)_{Dipole} = \frac{3}{4} (1 + \cos^2 \theta)$$

$$W(\theta)_{Quadrupole} = \frac{5}{4} (1 - 3\cos^2 \theta + 4\cos^4 \theta)$$
(3)

一方、共鳴幅は換算遷移確率と比例関係にあり、

$$B(E1) \uparrow = \frac{2.866\Gamma_0}{E_{\gamma}^3} \quad (10^{-3}e^2 fm^2)$$

$$B(M1) \uparrow = \frac{0.2598\Gamma_0}{E_{\gamma}^3} \quad (\mu_N^2)$$

$$B(E1) \uparrow = \frac{6201\Gamma_0}{E_{\gamma}^5} \quad (e^2 fm^4)$$
(4)

と書け、核磁気モーメントなどの核構造の特徴が換算遷移確率に反映される。したがって、散乱強度(*I_s*)の測定から、換算遷移確率を求めることができる。

レーザーコンプトンガンマ線の特徴として、高い直線偏光度があげられるが、直線偏光ガンマ線光源を用いた場合、(3)式で表わされる角度分布は、双極子遷移と四 重極子遷移に対して、次式のように置き換えることができる[2]。

$$W(\theta, \phi)_{Dipole}^{Pol.} = W(\theta)_{Dipole} \mp \frac{3}{4} (1 - \cos^2 \theta) \cos 2 \phi$$
$$W(\theta, \phi)_{Dipole}^{Pol.} = W(\theta)_{Quadrupole} \mp \frac{5}{4} (1 - 5\cos^2 \theta + 4\cos^4 \theta) \cos 2 \phi$$
(5)

ここで、マイナス符号は E1 遷移、M2 遷移、プラス符号は M1遷移、E2 遷移に 対応する。また、 ϕ は入射ガンマ線の偏光面に対する共鳴散乱ガンマ線の放出角度 である。特に、散乱角 θ =90 度において、角度分布の差が顕著に現れ、非対称度 Σ を

$$E = \frac{W(90^{\circ}, 0^{\circ}) - W(90^{\circ}, 90^{\circ})}{W(90^{\circ}, 0^{\circ}) + W(90^{\circ}, 90^{\circ})}$$
(6)

と定義すると、M1 及び E2 遷移に対して $\Sigma =1$ 、E1遷移に対し $\Sigma =-1$ となる。一方、 測定から得られる非対称度 A は、 $q\Sigma$ と表すことができる。ここで、q は測定感度 で、検出器の立体角やターゲットの空間分布に依存し、1 よりも小さな値となる。

10.5 光核共鳴散乱実験の例

レーザーコンプトンガンマ線は、産業技術総合研究所や SPring-8 のニュースバル放 射光施設において稼働している (産総研のガンマ線源は東日本大震災の影響により閉 鎖された)。図 10.2 に測定装置の概念図を示している。レーザー光と電子とのコンプ トン散乱により発生したレーザーコンプトンガンマ線を、鉛コリメーターを用いてエ ネルギー選別する。ガンマ線のエネルギー幅はコリメーターのサイズに依存し、ΔE/E ~10%程度である。このようなガンマ線をターゲットに照射し、散乱角 90 度方向に 設置した高純度ゲルマニウム検出器を用いて、共鳴散乱ガンマ線の測定を行う。この 際、最下流に設置した GSO シンチレーション検出器を用いて、入射ガンマ線の強度 測定を行う。

図 10.2. 光核共鳴散乱実験のセットアップ

図 10.3 に、鉛 208 ターゲットに、最大エネルギー 7.5 MeV のレーザー逆コンプト ンガンマ線を照射した時の核共鳴散乱ガンマ線のエネルギースペクトルを示してい る。図 10.3 の上(下)図は、入射ガンマ線の偏光面と平行(垂直)な向きにゲルマ ニウム検出器を設置した時のものである。図 10.3 において、鉛 208 の共鳴散乱ガン マ線が、多重極度(E1 または M1)の違いにより、はっきりと観測されているこ とがわかる。また、図 10.4 に、双極子遷移に対する非対称度を示している。その結 果、中性子放出のしきい値エネルギー近傍における詳細な1+準位構造を同定し、乱雑 位相模型を用いた理論計算からアイソスカラー、アイソベクトル M1 遷移強度に対 するテンソル力の重要性を明らかにした[8]。

図 10.3 鉛 208 の散乱ガンマ線スペクトル。上:入射ガンマ線の偏光面と散乱ガンマ 線の放出方向が平行で、M1 遷移が観測されている。下:入射ガンマ線の偏光面と散 乱ガンマ線の放出方向が垂直で、E1 遷移が観測されている。

図 10.4 ガンマ線強度の非対称度

10.6 ERL レーザーコンプトンガンマ線を用いた光核共鳴散乱実験

ERL レーザーコンプトンガンマ線は、従来のレーザーコンプトンガンマ線よりも 高輝度で、エネルギー幅で1桁以上の改善が見込まれ、強度で5~7桁程度の向上が 見込まれる。産総研での鉛208の実験では、高濃縮鉛208ターゲット8gにレーザー コンプトンガンマ線を照射し、大容量の高純度ゲルマニウム検出器3台を用いて、約 100時間の測定を行った。光核共鳴散乱実験では、これまで、ほぼ100%の濃縮度の ターゲットがグラム単位で必要であり、実験上の大きな制約になっていた。一方、大 強度の ERL レーザーコンプトンガンマ線を用いることにより、少量の濃縮試料ター ゲットで、短時間での測定が可能になる。たとえば、従来のレーザーコンプトンガン マ線に比べて強度が5桁高いガンマ線が得られる場合、上述の鉛208実験と同等のデ ータを、高濃縮鉛208ターゲットを、僅か100 mgを用いて、約10分の測定時間で 得ることができる。特に、これまでは困難であった希少元素(同位体比の少ない偶々 核、奇核やタンタル180やランタン138などの奇々核)に対する光核共鳴散乱測定が 可能になる。また、中性子放出のしきい値以上のエネルギーにおいても、中性子放出 チャンネルが開くため、核共鳴散乱ガンマ線の測定は非常に困難であったが、ERL レーザーコンプトンガンマ線の実現により、高精度の光核共鳴散乱ガンマ線の測定が 可能になると考えられる。さらに、エネルギー幅が従来のガンマ線源よりも1桁以上 小さくなることから、バックグランド計数が軽減されることによる高感度での測定が 可能になる。

参考文献

- [1] U. Kneissl, H. H. Pitz, and A. Zilges, Prog. Part. Nucl. Phys. 37, 349 (1996).
- [2] T. Otsuka et al., Phys. Rev. Lett. 81, 1588 (1998).
- [3] T. Motobayashi et al., Phys. Lett. B 346, 9 (1995).
- [4] T. Otsuka et al., Phys. Rev. Lett. 104, 012501 (2010).
- [5] T. Shizuma et al., Phys. Rev. C 78, 061303(R)(2008)
- [6] S. W. Bruenn and W. C. Haxton, Astrophys. J. 376, 678 (1991).
- [7] K. Langanke, et al., Phys. Rev. Lett. 93, 202501 (2004).
- [8] L. W. Fagg and S. S Hanna, Rev. Mod. Phys. 31, 711 (1959).

11. 単色γ線を用いた核分裂研究

要旨

大輝度・単色かつ偏極したガンマ線を用いたアクチナイド原子核に対する光 核分裂反応の実験では、2 重閉殻である Sn132 が検出され原子核の超変形の存 在が確実に証明できるようになる。また、核分裂障壁ポテンシャルの上に立つ 励起準位の微細構造を調べることによって、超変形の構造が研究出来る。巨大 双極子共鳴 (GDR) からの核分裂モードを調べることによって、トリウムやウラ ンなどのアクチノイド原子核の核分裂過程がより明らかになる。

11.1 共鳴トンネリングと核分裂

原子核の変形

図 11.1 核分裂障壁の構造の模式図

アクチノイド原子核に対して中性子やガンマ線などを照射すると、原子核が 大きく2つに分裂する現象は古くから知られている。原子核を1個の液滴とみ なすことで原子核の形状・運動を記述する液滴モデルでは、原子核の変形度が 大きくなると核分裂が発生する。そのため、液滴モデルでは核分裂障壁は単調 な一つのこぶを持つ構造(図 11.1 の点線)をとる。このような単調な構造を有 する核分裂障壁は、Strutinsky が提案した殻エネルギー補正を行うことによって 2 つのコブを持つような核分裂障壁 (double-humper fission barrier) に修正され (図 11.1 の実線)、より現実に近くなる。様々な原子核実験によって現実の障壁 構造はこのような複数のコブを有することが分かっている。このような障壁構

造はアクチノイド原子核の特徴であり、とりわけ核分裂過程に於いてユニーク

な現象を引き起こす原因になる。原子核の状態が2つのコブの間に存在する場合、準安定な状態を形成し、これを形状異性体と呼ぶ。この形状異性体は、ア クチノイド原子核の障壁構造の特異性から生まれる顕著な現象の例である。

ウラン 235 などが低エネルギーの中性子を吸収した場合、励起された複合核 は障壁よりも高励起準位なるため、容易に核分裂が起こる。一方、ウラン 238 やネプツニウム 237 では、低エネルギー中性子を吸収しても、ペアリングエネ ルギー項の効果によって核分裂に必要な十分に高い励起準位にならず、トンネ リングでしか核分裂が起きない。WKB 近似による核分裂の透過確率の計算では、 励起エネルギーの低下とともに、単調に核分裂の確率が下がるだけである。し かし、厳密な計算を行うと、第 2 の極小値上に表れる励起状態のため、ユニー クな構造が現れる。

図 11.2 Np(n,f) にみられる核分裂断面積の微細構造(参考文献[1]より)

図 11.2 は Np237 に中性子を照射し核分裂断面積を入射中性子のエネルギーを 変化して測定した結果である。驚くべきことに、核分裂断面積は大きく変形し たポテンシャルでの準位相と共鳴するかどうかで鋭敏に変化し、透過断面積の 微細構造が顕著に表れた。図 11.2 (a) は、中性子エネルギー範囲を広くとっている。ここに表れる構造は、ポテンシャルの第2の極小値の上の量子化エネルギー準位を表している。一つの共鳴に着目して拡大すると(図 11.2 (b))、さらに細かい微細構造を持つピークから構成されているのがわかる。これは、基底状態の上に立つ高励起状態の準位を反映したものである。このような高励起状態のエネルギー準位構造は、ポテンシャル形状を調べるために有用である。

中性子入射反応の場合、励起できるエネルギー範囲は極めて限られ、ほぼ障 壁のピーク近傍だけとなる。そこで、エネルギー可変の単色の γ 線源を用いれ ば、形状異性体上にあって、比較的励起エネルギーの低い振動状態を励起する ことができ、第2の極小値上での準位構造の全体像を明らかにできる。

さらに、第2の極小値の振動状態を励起した場合の光核分裂では、ユニーク な崩壊が実験的に観測されるかもしれない。すなわち、特定の振動状態を経由 することから、その質量非対称度が分裂過程を大きく支配し、限定された質量 数範囲の核分裂片が生成される可能性がある。

図 11.3 (左) Hyper Deformation と、ここにおける形状(右)

図 11.3 に示されているように、Th232, U234, U236 の励起状態は超変形状態 (Hyper Deformation) が予測されている[2]。この Hyper-deformation の存在を観測 したと云う報告(例えば、[3]) はあるが、その実験結果の解釈については未だに 多くの議論がある。例えば、最近でも Pa231 に対して Hyper-deformation を探索 して重水素ビームで実験が行われたが、角度分布を得ることが出来ていない[4]。 アクチノイド原子核に対する光核反応を用いて、Hyper-deformation の存在を 確実に示すことができるであろう。第2の極小値上での振動状態を励起できれ ば、核分裂に対する崩壊幅が大きいので、核分裂を観測することが出来るので、 Hyper-deformation を検証することができる。また、第2の極小値上を作るポテ ンシャルは Sn132 が支配的なクラスター構造からできていると理論的に予測さ れている。したがって、光核反応で第2の極小値のポテンシャルを基底として いる準位と共鳴して起こる核分裂では、質量132 にピークを有する特徴的な質 量数分布を持つ可能性があり、まさに光核反応を用いて核分裂過程を制御する ことが出来る。

11.2 巨大双極子共鳴吸収と核分裂

アクチノイド原子核の巨大双極子共鳴 (GDR) 領域の γ 線吸収断面積を見る と、原子核の長軸方向への振動と短軸方向への振動に応じで断面積ピークが異 なる位置に表れ、吸収断面積スペクトルが 2 つの幅の広いピークから構成され ている構造を示す (図 11.4)。単色 γ 線を用いることで、特定の振動方向だけを 励起させて核分裂を観測することで以下の考察ができる。

図 11.4 U238 の光吸収核分裂断面積の模式図

ノーベル賞を授与された A. Bohr の理論では、サドル点上の振動準位を経由 することで初めて核分裂が起こる。ここでは Prolate 変形をしているので、長軸 振動状態からの遷移は従来のサドルを経由して核分裂する。一方、短軸方向へ の振動は、従来のサドル点とのマッチングが悪い。したがって、場合により異 なるサドル点に遷移する可能性がある(最近の多次元ポテンシャル計算では、 一般に、サドル点は複数定義されている)。サドル点の形状は、異なる核分裂モ ード(非対称度)に対応すると考えられるので、質量数分布に違いが現れる可 能性があり、これを検証する。

図 11.5 核分裂片の質量数分布 (a) に対し、質量対称部分 (b) と非対称部分 (c) にゲートをかけて導いた核分裂片の角度分布 (b, c) (参考文献[5]より)

一方、prolate 変形した障壁においても、サドル点上に形成される量子状態は いくつか存在する。それぞれの状態は核分裂片の角度分布に決定的な制限を与 えるとともに、核分裂過程の質量対称度との相関もあると考えられる。Tagged photon を用いることで、この兆候を観測したという報告がある[5]。光核反応の 実験では単色の偏極した γ 線を用いることで、より明確な結論が導けることに なる。 参考文献

- [1] D. Paya et al., J. Phys. (Paris) Supp. 29, 159 (1968).
- [2] P. Möller, et al., Phys. Lett. B40, 329 (1972).
- [3] A. Krasznahorkay, et al., Phys. Rev. Lett. 80, 2073 (1998).
- [4] L. Csige et al., Phys. Rev. C 85, 054306 (2012).
- [5] W. Wilke et al., Phys. Rev. C 42, 2148 (1990).

12 重水素標的を用いたパリティ非保存の研究

要旨

重陽子は陽子と中性子の核子 2 体系であり強い力と弱い力がどのように関わっているのかを知るもっとも簡単なシステムである。円偏光ガンマ線を用いた 重陽子の光分解反応を用いて、パリティの破れを測定することで、強い力と弱 い力の基本的な関連が研究出来る。

12.1 はじめに

40 年以上前には原子核でのパリティ非保存 (Parity non-conservation (PNC))はストレンジネス を保存した ($\Delta S = 0$)核子-核子間相互作用中に働く 「弱い力」が研究できるものとして期待されていた。 パリティの破れの研究では、きわめて短距離でのク ォーク間での弱い相互作用を調べることが出来る。 また、この研究は複雑なハドロン系での QCD 動力 学の研究に結びつくものと信じられてきた[1,2]。現 在、Desplanques, Donoghue, Holstein (DDH) [3]らの理 論によれば、原子核でのパリティ非保存は短距離で の weak ボソン Z^0 と π -, ρ -, ω -メソンとの結合 の結果として出現すると考えられている[図 12.1 参 照]。相互作用の基本的対称性とクォーク模型に基 づいて、DDH はこのパリティ非保存の相互作用の 基本的な形を推定した。それぞれのメソンとの結合

図 12.1 パリティ非保存の核 子—核子相互作用の模式図。 **Z⁰の飛距離は 0.02 fm 程度で** ある。π中間子の飛距離 1.4 fm に比べて極端に短い。

定数は PNC meson-nucleon coupling constant として実験で決定すべきものとされた[3,4,5,6,7,8]。

これまでの PNC 実験結果を解析してみると π -, ρ -メソン交換に起因する アイソ・スカラー型のパリティ非保存核力は、DDH の予想とだいたい一致して いるが、 π -メソンに起因する PNC 相互作用は、理論予想の三分の一となって いて食い違いが甚だしい[2,9]。たとえば、¹⁹F に対する実験から得られた結果[10] と ¹³³Cs のアナポール・モーメントの測定からの結果[11,12]を比べてみても食い 違いが顕著になっていることが理論的に指摘されている[8,13]。PNC 実験の困難 性などを考えれば、新しいタイプの実験やそれに対する理論的基盤を与えるこ とが、直面している矛盾を解き、基本的 NN weak coupling を理解する道筋をつ けるためにも重要である。

核子—核子レベルでの PNC 遷移はもっとも基本的なものである。この点に 注目して偏極陽子-陽子散乱が多くの予算と歳月をかけてカナダ・バンクーバー で行われてきた[14,15]。近年では、相補的な重陽子の絡む $\gamma D \rightleftharpoons np$ 実験が特に 重要になってきた。現在までに、偏極熱中性子を使った $np \rightarrow \gamma D$ 実験も行われ ている。過去の実験結果は、精度が荒く、理論的な予測に対しては何らの制限 を与えられていなかった[16,17,18,19,20,21]。アメリカでは偏極中性子を用いた精 度の高い実験計画がロシアラモス研究所で立案され実施に移されようとしてい る[22]。

これまで原子核でのパリティ非保存実験で最も基本とされる陽子—中性子の2 体系の重水素の光分解の実験結果の解析が参考文献[23,24,25]で行われてきて

いる。しかしながら、Schiavilla 達[26]の理 論解析によれば重水素の光分解でのパリ ティ非保存実験結果は、必ずしも、weak ボソン Z^0 と π -, ρ -, ω -メソンとの相互作 用の干渉効果を議論できないとの結論に 達している。図 12.2 に表示されているよう に、残念ながら、これまでの実験では、短 距離での weak ボソン Z^0 と π -, ρ -, ω -メソンとの結合項は、さまざまな原子核に 対するデータを総合的に見て、決定するし かなかったが[8]、結果として理論に厳格な 制限を与えるというレベルまでには至っ

ていない。円偏光入射偏極ガンマ線エネルギーを関数として $\vec{\gamma}D \rightarrow np$ 反応にお ける非対称度を測定することによって、もっと 図 12.2 Haxton 達[8]によって得られ も基本的である陽子—中性子 2 体系(重陽子) た実験からの weak coupling パラメ での weak coupling 項を導きだせるであろう。 ^{一夕の相関図。}明確に一致するバン ド領域が未だに決定されていない。

12.2 ERL からの円偏光大輝度 LCS ガンマ線を用いたパリティ非保存実験

今後、建設が進むと期待される Energy Recovery Linac (ERL) 施設で期待され る大強度、偏極ガンマ線ビームを用いた $\gamma D \rightarrow np$ 実験は、weak ボソンZ⁰と π -, ρ -, ω -メソンとの相互作用の干渉効果が議論できるという点で非常に重要 な基礎研究になる。実際、 $np \rightarrow D\gamma$ の陽子による中性子捕獲の実験ではガンマ 線エネルギーは 2.23 MeV の一点に対応するエネルギーに対応したものしか得 られない。パリティ非保存の効果は陽子による中性子捕獲を通して現れる。し たがって、この効果は 1.4 fm の飛距離を持つ π 中間子が媒介する相互作用中の パリティ非保存項を通してのみ現れる。一方、光重水素分解反応では、陽子--中性子がきわめて短距離に接近した時にも分解反応が起こる。したがって、ガンマ線エネルギーの関数として PNC 効果が観測されるので、 NN 相互作用におけるきわめて短距離のパリティ非保存項が、重陽子光分解という一つの実験データを用いて任意性なく研究できると期待される。

図 12.3 重陽子光分解の断面積。E1 と M1 のそれぞれの遷移確率の寄与を別々に表示した。 横軸は重陽子の分解閾値 E_{th}=2.23 MeV をガンマ線エネルギーから差し引いている。

偏極ガンマ線を用いた重水素原子核での光分解反応でのパリティ非保存実験 での測定量は2つある。一つは無偏極ガンマ線を用いて重水素原子核をビーム 方向に縦核偏極させて、核偏極方向に交互にフリップさせて重水素光分解断面 積の非対称 A_D を測定する方法である。具体的な測定量は

$$A_{D} = \frac{\sigma_{M_{D}=1} - \sigma_{M_{D}=-1}}{\sigma_{M_{D}=1} + \sigma_{M_{D}=-1}}$$

と書ける。もし、この測定量が測定されたならば π 中間子交換によるパリティ 非保存項が明らかになる[9]。

もう一つの測定量はガンマ線を円偏極させて、右円偏光と左円偏光での重水 素光分解 $\vec{\gamma}D \rightarrow np$ 反応における非対称度 A_{RL} を測定する方法である。

$$A_{RL} = \frac{\sigma_{\lambda=1} - \sigma_{\lambda=-1}}{\sigma_{\lambda=1} + \sigma_{\lambda-1}}$$

ここで、 $\sigma_{\lambda=1}$ 、 $\sigma_{\lambda=-1}$ はそれぞれ右偏光、左偏光で測定した $\vec{\gamma}D \rightarrow np$ 反応断面 積を表す。

図 12.3 に示すように、重陽子光分解の断面積は 1-2 mb と小さい。パリティ非

対称量の測定量は、さらに小さく、 10^{-8} の桁となる。したがって、上記に記した 2 つの方法での非対称測定で、標的数の少ない偏極重水素ターゲットを用いるのは得策ではない。ただし、無偏極重水素標的を用いて光重水素分解で出てきた中性子を補足するという方法では、重水素標的の厚さも 100cm 程度にできる。この場合、液体重水素の密度は 0.165g/cm³ なので重水素標的数は 0.165×100×1/4×6×10²³ = 2.45×10²⁴ となり、ガンマ線強度を 10^{12} /secとして、断面積を 1 mb とすれば、光重水素分解で発生する中性子数は毎秒 2.45×10²⁴×10¹²×10⁻²⁷ = 2.45×10⁹ となる。

図 12.4 円偏光ガンマ線を用いた重水素分解反応 $\vec{\gamma}D \rightarrow np$ の A_{RL} 非対称度の理論計 算。横軸は重水素分解の閾値からのガンマ線エネルギー。(a) PRAIS ポテンシャルを用 いたときの計算例。個々の核力の寄与が計算されている。(詳しくは参考文献[9]を参照) (b) NN 相互作用として Paris ポテンシャル, Hamada-Johnson、ZRA ポテンシャルを用い た時の計算結果。短距離の部分が互いにことなるので、パリティ非対称測定量では大 きく異なる。

100 cm に渡って円筒形にセグメント化した中性子検出器を 100 個程度配置すれば中性子検出は技術的に可能になる。一日は 8.64×10⁴ 秒であるので 100 日

程度の測定で非対称度測定量の誤差 70%程度を得ることが現実的に可能となる。 もちろん、さらに測定時間を短縮するために長い液体重水素標的製作、さらに 高速化されたデータ採取技術の開発が必要であるが、近年のコンピュータ技術 の発展に伴う技術開発によって、これらの事は着実に克服できる課題である。 重要なことは、パリティ非対称 A_{RL} の測定は核力の短距離部分に強く依存して いるために、A_{RL} を測定することで、現在まで原子核物理実験では明らかにな らなかった、理論で用いられてきた核力に一定の制限を加えることができると いう点である。

QCD に基づくハドロン物理と従来の核物理での核力は短距離部分にその接点 がある。理論で用いられてきた短距離力は、長距離 1.4 fm のπ中間子交換力か ら解析接続的に原子核実験結果を合わすような形で形成されてきた。核子の大 きさが有限であり半径 1.2 fm と大きいことから、短距離部分が正しいかどうか は、正直なところ、自明ではない。原子核でのパリティ非保存の実験結果の信 頼のおける系統的な測定結果の蓄積とともに重水素光分解でのパリティ非対称 測定の求められる所以である。

参考文献

- [1] E. M. Henley, Annu. Rev. Nucl. Sci. **19**, 367 (1969).
- [2] E. G. Adelberger and W. C. Haxton, Annu. Rev. Nucl. Part. Sci. 35, 501 (1985); W. Haeberi and B. R. Holstein, in Symmetries and Fundamental Interactions in Nuclei, edited by W. C. Haxton and E. M. Henley (World Scientific, Singapre, 1996), p. 17.
- [3] B. Desplanques, J. F. Donoghue, and B. R. Holstein, Ann. Phys. (N.Y.)124, 449 (1980).
- [4] Ulf G. Meißner and H. Weigel, Phys. Lett. B 447, 1 (1999).
- [5] E. M. Henley, W. Y. P. Hwang, and L. S. Kisslinger, Phys. Lett. B 367, 21 (1996);
 440, 449 (1998).
- [6] V. M. Dubovik and S. V. Zenkin, Ann. Phys. (N. Y.) 172, 100 (1986).
- [7] G. B. Feldman, G. A. Crawford, J. Dubach, and B. R. Holstein, Phys. Rev. C 43, 863 (1991).
- [8]W. C. Haxton, C. P. Liu, and M. J. Ramsey

– Musolf, Phys. Rev. C 65, 045502 (2002).

- [9] M. Fujiwara and A. I. Titov, Phy. Rev. C 69, 065503 (2004).
- [10]E. G. Adelberger, M. M. Hindi, C. D. Hoyle, H. E. Swanson, R. D. Von Lintig, and W. C. Haxton, Phys. Rev. C 27, 2833 (1983).
- [11] S. A. Page et al., Phys. Rev. C 35, 1119 (1987).
- [12] C. S. Wood, S. C. Bennett, D. Cho, B. P. Masterson, J. L. Roberts, C. E. Tanner, and C. E. Wieman, Science 275, 1759 (1997).

- [13] C. S. Wood, S. C. Bennett, D. Cho, C. E. Tanner, and C. E. Wieman, Can. J. Phys. 77, 7 (1999).
- [14] V. V. Flambaum and D. W. Murray, Phys. Rev. C 56, 1641 (1997).
- [15] A. R. Berdoz et al., Phys. Rev. Lett. 87, 272301 (2001).
- [16] A. R. Berdoz et al., Phys. Rev. C 68, 034004 (2003).
- [17] V. A. Knya'zkov, E. A. Kolomenskii, V. M. Lobashov, V. A. Nazarenko,
- A. N. Pirozhkov, A. I. Shablii, E. V. Shulgina, Yu. V. Sobolev, and A. I. Yegorov, Nucl. Phys. **A417**, 209 (1984).
- [18] G. S. Danilov, Phys. Lett. **35B**, 579 (1971); Sov. J. Nucl. Phys. **14**, 443 (1972).
- [19] K. R. Lassey and B. H. J. McKellar, Phys. Rev. C 11, 349 (1975); 12, 721(E) (1975); M. Gari and J. Schlitter, Phys. Lett. 59B, 118 (1975);
- J. P. Leroy, J. Micheli, and D. Pignon, Nucl. Phys. A280, 377 (1977).
- [20] B. Desplanques, Nucl. Phys. A335, 147 (1980).
- [21] J. F. Cavaignac, B. Vignon, and R. Wilson, Phys. Lett 67B, 148 (1977).
- [22] B. Desplanques, Phys. Lett. B **512**, 305 (2001).
- [23] M. Snow et al., Nucl. Instrum. Methods Phys. Res. A 440, 729 (2000).
- [24] W. Y. P. Hwang, E. M. Henley, Ann. Phys. (N. Y.) **129**, 47 (1980).
- [25] W. –Y. P. Hwang, E. M. Henley, and G. A. Miller, Ann. Phys. (N.Y.) 137, 378 (1981).
- [26] R. Schiavilla, J. Carlson, and M. Paris, Phys. Rev. C 67, 032501 (2003).

13 円偏光ガンマ線を用いた核蛍光励起でのパリティ非保存

要旨

大輝度 LCS ガンマ線の実現によって理想的な円偏光ガンマ線が得られる。この円偏光ガンマ線と原子核の核蛍光励起を利用したパリティ非保存の実験の物理の内容と理論的予想について議論する。

13.1 初めに

パリティ非保存は 1956 年に発表された Lee と Yang の鏡映対称のやぶれ[1]の 理論に刺激され行われたコロンビア大学の Wu たち[2]のベータ崩壊における実 験で証明され、広く知られるようになった。現在では、このパリティ非保存は、 ベータ崩壊を媒介する質量が陽子の約 90 倍の正負の荷電をもつ W[±] ウイーク ボゾンの交換過程が起因して起こるということがわかっている。

ベータ崩壊過程でなく、原子核中でのパリティ非保存現象の研究の歴史は長 く、ファインマンとゲルマンの弱い相互作用と電磁相互作用の統一模型におけ る中性弱カレント理論[3]に刺激され行われた 1957 年の Tanner [4]の実験までさ かのぼることができる。Wilkinson [5]は、世界の科学者の中心的存在として原子 核中でのパリティ非保存現象の研究を推進した。

原子核中でのパリティ非保存効果に寄与する過程は核子—核子相互作用での メソン交換に過程での Z^0 や W^{\pm} ボソンとの結合に起因する。この過程の詳細 は参考文献[6,7]に詳しく記述されている。未解決のまま残されている問題は、理 論で予言されているウィーク・ボソンと中間子の結合定数が、今までの実験を 総合的に眺めてみると、どうも総合的に理解できなくて、実験結果に矛盾があ ると考えられる点である。Haxton 達の解析[8]によると、パリティ非保存実験結 果はいまだに誤差が大きく、理論と比較して矛盾のない物理結果を導出するた めにはさらに実験的、理論的な努力を傾注する必要があることが結論されてい る。

実験的なパリティ非保存の研究の一つは原子核励起準位のスピンJ が同じで パリティの子異なる準位(パリティ2重項)の間のパリティ混合量を測定する ことである。摂動法を用いて励起エネルギーの接近した2つのパリティ2重項 の波動関数は次のように書ける。

$$\left|\widetilde{\phi_{\pi}}\right\rangle = \left|\phi_{\pi}\right\rangle + \frac{\left\langle\phi_{\pi}\right|V_{PNC}\left|\phi_{-\pi}\right\rangle}{E_{\pi} - E_{-\pi}}\left|\phi_{-\pi}\right\rangle \tag{1}$$

ここで ϕ_{π} と E_{π} はそれぞれ異なるスピン・パリティ $(J^{\pm}) 2$ 重項の波動関数と 原子核の励起エネルギーである。過去の実験手法では、まず、パリティ 2 重項 のどちらかを何らかの核反応で励起し、その後、パリティ非保存による非対称 を放出された円偏光を測定するという手法で観測していた[6]。この非対称は

$$P_{\gamma} \sim \frac{2R}{E_{\pi} - E_{-\pi}} \langle \phi_{\pi} | V_{PNC} | \phi_{-\pi} \rangle \tag{2}$$

と書ける。ここでパリティ 2 重項からの週状態への遷移の大きさの比(たとえ $i = \left| \frac{(f|o(E1)|1)}{(f|o(M1)|2)} \right|^2$ が定義でき大抵の場合、 $R \gg 1$ となる。例えば、²¹Neの場合、 2789 keV と 2795 keV に 1/2⁻ と 1/2⁺ の 2 重項があり、そのエネルギー間隔は 5.7 keV である。この場合、2 つの準位の波動関数は 3%程度の混合があると期待で きる。実際に、Adelberger 達が行ったシアトルグループの実験では非対称度 $P_{\gamma} = (0.8 \pm 1.4) \times 10^{-3}$ が報告されている[9]。原子核の遷移による増強効果 R が 結構大きいとしても、未だに実験的には上限しか与えられていないのが現実で ある。スピン 2 重項の例は、¹⁹F($\frac{1}{2}$, 109.9 keV $\rightarrow \frac{1}{2}^+$,g.s.)、¹⁸F(o⁻, 1080 keV $\rightarrow 1^+$,g.s.)、¹⁷⁵Lu($\frac{9}{2}^-$, 396 keV $\rightarrow \frac{7}{2}^+$,g.s.)などの例がある[6,7,10,11]。すべての 場合において、原子核を核反応で励起し、きわめて励起準位から放出される円 偏光ガンマ線を測定することに起因するデータの精度が決定的に不十分であり、 モデル計算との比較が統一的に行えないことである。信頼性の高いパリティ非 保存量を実験で求めるためには、いままでとは異なるタイプの実験が必要とな る。

13.2 円偏光ガンマ線による核蛍光反応の非対称

コンプトン散乱によってできる大強度ガンマ線 (Laser Compton Scattering: LCS)を用いた核蛍光反応でのパリティ非保存実験は全く新しい可能性を開く。 右円偏光、左円偏光ガンマ線を用いて原子核の基底状態からパリティ 2 重準位 を励起し、励起準位から放出されるガンマ線を観測する。パリティ非対称は異 なるヘリシティのガンマ線に対する核蛍光反応生成率の違いとなって観測され る。ここでの非対称性 *A*^a_{RL} は

$$A_{RL}^{a} = \frac{\sigma_{R}^{a} - \sigma_{L}^{a}}{\sigma_{R}^{a} + \sigma_{L}^{a}}$$
(3)

と定義でき、式 (2) と同じである。このことは、さまざまな論文で議論されて きている[6,7,10,11]。LCS ガンマ線を用いた新しい側面は、 $\gamma_i + A_{g.s.} \rightarrow A^* \rightarrow \gamma_f + A_{g.s.}$ 反応での非対称は A^a_{RL} と異なり、放出ガンマ線が角度依存性 $A_{RL}(\theta)$ を持 つようになるという点である。この効果は今まで指摘されていなかったが、角 度依存性 $A_{RL}(\theta)$ を持つことから、入射ガンマ線からの観測角度によっては、 パリティ非保存量が大きくなったり、小さくなったりすることも期待できる。 このことを¹⁹F($\frac{1}{2}^{-}$, 109.9 keV $\rightarrow \frac{1}{2}^{+}$, g.s.) の場合に対して議論してみよう。図 13.1 は、光が¹⁹F の基底状態に吸収され、109.9 keV, $\frac{1}{2}^{-}$ 準位を励起し、蛍光を出し 再び¹⁹F の基底状態に帰るという「核蛍光反応」の模式図である。この例はも っとも簡単な場合で、同じような考えで容易に大きなスピンの場合のスピン・2 重項にも拡張できる。¹⁹F の基底状態 ($J^{\pi} = \frac{1}{2}^{-}$) と 109.9 keV, $\frac{1}{2}^{-}$ の第一励起準 位がスピン・2 重項であるとしよう。パリティ混合があると仮定すれば、これら 2 つの準位の波動関数は以下のように書ける。

図 13.1 $\gamma_i + {}^{19}F(\frac{1}{2}^+) \rightarrow {}^{19}F^*(\frac{1}{2}^-) \rightarrow \gamma_f + {}^{19}F\left(\frac{1}{2}^+\right)$ 核蛍光励起の模式図

$$\left|\frac{\tilde{1}^{+}}{2}\right\rangle = \left|\frac{1}{2}^{+}\right\rangle - \alpha \left|\frac{1}{2}^{-}\right\rangle, \quad \left|\frac{\tilde{1}^{-}}{2}\right\rangle = \left|\frac{1}{2}^{-}\right\rangle + \alpha \left|\frac{1}{2}^{+}\right\rangle, \tag{4}$$

ここで、パリティ混合比は

$$\alpha = \frac{\left\langle \frac{1}{2} \middle| V_{PNC} \middle| \frac{1}{2} \right\rangle}{\Delta E}$$
(5)

であり、 $\Delta E = E_{\frac{1}{2}} - E_{\frac{1}{2}}$ は2つの準位のエネルギー差である。NRF 過程

 $\gamma_i + A \rightarrow A^* \rightarrow \gamma_f + A (A = {}^{19}F)$ の遷移確率は吸収 T^a と崩壊 T^d 振幅から計算でき、

$$T_{\lambda_i \lambda_f} = T^a_{m^*;\lambda_i,m_i} \cdot T^d_{\lambda_f,m_f;m^*,} \tag{6}$$

と表される。ここで $m_i, m^*, m_f, \lambda_i, \lambda_f$ は原子核 A の初期状態、週状態のスピン の量子軸への射影、ガンマ線のヘリシティである。ここで、励起状態のスピン 角運動量は短い崩壊寿命の間は保存されると仮定している。

円偏光ガンマ線の吸収遷移確率 $T_{J_f m_f; \lambda, J_i m_i}$ は

$$T_{J_f m_f; \lambda, J_i m_i} = -\sum_{L \ge 1} i^L \sqrt{2\pi (2L+1)} \times \frac{\langle J_i m_i L \lambda | J_f m_f \rangle}{\sqrt{2J_f + 1}} [F_{EL} + \lambda F_{ML}]$$
(7)

と書ける[13]。ここで J_i, J_f, m_i, m_f は初期状態、終状態のスピンとその量子化軸 への投影であり、 λ はガンマ線のヘリシティである。また、 $F_{E/ML} = \langle f || T^L_{E/M} || i \rangle$ はガンマ線の遷移マトリックスである。スピン 1/2 の場合、

$$T_{m_{f:\lambda,m_i}} = i(\lambda E1 + M1) \,\delta_{m_f,\lambda/2} \delta_{m_i,-\lambda/2} \tag{8}$$

となる。ここで、 $E1 \equiv \sqrt{2\pi}F_{E1}, M1 \equiv \sqrt{2\pi}F_{M1},$ と定義される。式 (4) で表されるスピン 1/2 のパリティ2 重項の場合、電磁遷移マトリックスは、

$$T_{m^*_{:,\lambda_i,m_i}}(\mathbf{z}) = i(\lambda_i E 1 + \alpha \mu) \,\delta_{m^* \frac{\lambda_i}{2}} \delta_{m_i, -\frac{\lambda_i}{2}} \tag{9}$$

と書ける。ここで、E1 は双極子遷移マトリックスであり、 μ は基底状態の磁気 モーメント μ^+ と励起状態の磁気モーメント μ^- の差 $\mu = \mu^+ - \mu^-$ であり、

$$\mu^{\pm} = \sqrt{2\pi} \langle 1/2^{\pm} \| T_M^1 \| 1/2^{\pm} \rangle \tag{10}$$

となる。実際の実験では z 軸は円偏光ガンマ線の入射方向になる。

励起された ${}^{19}F\left(\frac{1}{2}^+\right)$ は 109.9 keV のガンマ線を放出して基底状態 ${}^{19}F\left(\frac{1}{2}^-\right)$ に帰る。これに対応する遷移マトリックスは

$$T_{\lambda_f \cdot m_f; \overline{m}^*}(\mathbf{z}') = -i \left(\lambda_f E 1 + \alpha \mu\right)^* \delta_{\overline{m}^*, \frac{\lambda_f}{2}} \delta_{m_f, -\frac{\lambda_f}{2}}$$
(11)

となる。ここで式 (9) と (11) の本質的な違いは、入射ガンマ線と放射ガンマ線 の方向の違いによる量子化軸の違いとなる。量子化軸を放出ガンマ線の方向に した場合、励起状態のスピン偏極と入射状態のスピン偏極は次の式で関係つけ られる。

$$|1/2, \overline{m}^*\rangle = d_{mm'}^{\frac{1}{2}}(\theta) \left|\frac{1}{2}, m\right\rangle$$
(12)

ここで $d_{mm'}^{j}(\theta)$ は有限角 θ の回転の回転行列 (Wigner Function) である。角度 θ は入射ガンマ線と放出ガンマ線のなす角度として定義される。この関係を用 いれば、次の式を得る。

$$T_{\lambda_f.m_f;\,\lambda_f/2} = -i \left(\lambda_f E 1^* + \alpha(\mu)^* \right) \ d^{1/2}_{\lambda_i/2,\lambda_f/2}(\theta) \ \delta_{m_f,-\lambda_f/2} \tag{13}$$

回転行列の次の式を用い、

$$\sum_{\lambda_f} \left(d_{\lambda_i/2,\lambda_f/2}^{1/2}(\theta) \right)^2 = 1, \quad \sum_{\lambda_f} \lambda_f \left(d_{\lambda_i/2,\lambda_f/2}^{1/2}(\theta) \right)^2 = \lambda_i \sin \theta \tag{14}$$

かつ摂動計算で α^2 の高次項を無視することで、最終的に、パリティ非対称 $A_{RL}(\theta)$ は

$$A_{RL}(\theta) = (1 + \cos \theta) \cdot \langle A_{RL} \rangle$$

$$(15)$$

$$\langle A_{RL} \rangle = 2\alpha \cdot \operatorname{Re}\left(\frac{\mu}{E_1}\right)$$
 (16)

である。重要な結論は $\gamma_i + {}^{19}F(\frac{1}{2}^+) \rightarrow {}^{19}F^*(\frac{1}{2}^-) \rightarrow \gamma_f + {}^{19}F(\frac{1}{2}^+)$ 反応でのパリティ非対称は $1 + \cos \theta$ という角度依存性があることである。したがって角度依存性を測定することで実験結果の信頼性を確かめることが可能となる。

同じような結論は他の原子核の場合も同様に導ける。¹⁸Fの場合は、J = 0の パリティ2重項目が励起エネルギー 1.042 MeV ($J^{\pi} = 0^{+}$)と 1.081 MeV ($J^{\pi} = 0^{-}$)にある。残念ながら、¹⁸F ($J^{\pi} = 1^{+}$)はベータ崩壊し不安定核であるの で、実験の可能性はほとんど無いが、 $\gamma_i + {}^{18}F(1^+) \rightarrow {}^{18}F^*(0^-, 1081 \text{ keV}) \rightarrow \gamma_f + {}^{18}F(1^+)$ の場合についての場合を示しておこう。この場合は励起状態がJ = 0で初期状態のヘリシティの情報を励起準位が失うことになり、角度依存性はな く、

$$A_{RL}(\theta) = \langle A_{RL} \rangle = 2 \cdot \frac{\langle 0^{-} | V_{PNC} | 0^{+} \rangle}{E(0^{-}) - E(0^{+})} \cdot \operatorname{Re}\left(\frac{M1}{E1}\right)$$
(17)

となる。ここで E1, M1 は $1^+ \rightarrow 0^-, 1^+ \rightarrow 0^+$ の遷移マトリックスである。

²¹Ne(3/2⁺) の場合、遷移は γ_i + ²¹Ne(3/2⁺) → ²¹Ne^{*}(1/2⁻, 2789 keV) → γ_f + ²¹Ne(3/2⁺)

となり、パリティ非対称は

$$A_{RL}(\theta) = \left(1 + \frac{1}{4}\cos\theta\right) \quad \langle A_{RL}\rangle \tag{18}$$

$$\langle A_{RL} \rangle = -2 \cdot \frac{\langle 1/2^+ | V_{PNC} | 1/2^- \rangle}{E(1/2^+) - E(1/2^-)} \cdot \operatorname{Re}\left(\frac{M1}{E1}\right)$$
(19)

と書ける。式 (18) 中での 1/4 の因子は、光のヘリシティが 1 であるので、 ²¹Ne(3/2⁺) 基底状態のスピン substate は $-1/2\lambda_i$ または $-3/2\lambda_f$ となるところに起因している。

円偏光ガンマ線を非偏極標的に照射する代わりに、非偏極ガンマ線を偏極標 的に照射するという方法も理論的に考えられる。この場合、パリティ非対称は

$$A_S = \frac{\sigma_+ - \sigma_-}{\sigma_+ + \sigma_-} \tag{20}$$

と定義でき、標的原子核のスピンをガンマ線ビームの方向にそろえた時と、反

方向にした時の核蛍光反応断面積を σ_+, σ_- とした。対応するパリティ非対称は 次のようになる。

$$A_{S}(\theta) = -A_{RL}(\theta) = -(1 + \cos \theta) \cdot \langle A_{RL} \rangle$$
¹⁸F
$$A_{S}(\theta) = -A_{RL}(\theta) = -\langle A_{RL} \rangle$$
²¹Ne
(21)
(22)

$$A_{S}(\theta) = -\left(1 + \frac{1}{2}\cos\theta\right) \cdot \langle A_{RL}\rangle$$
(23)

表 1 には軽い原子核でパリティ非保存の研究が可能な原子核についてのエネル ギー、その他の諸性質を掲載した。初期状態と終状態のスピンを J_{i,J_f} とした時、 パリティ非対称 A_{RL} は以下のようになる。 $J_i = 0 \rightarrow J_f = 1$ 遷移の場合

$$A_{RL}(\theta) = \left(1 + \frac{\cos\theta}{1 + \cos^2\theta}\right) \cdot \langle A_{RL} \rangle \tag{24}$$

 $J_i = 0 \rightarrow J_f = 2$ 遷移の場合

¹⁹F

$$A_{RL}(\theta) = \left(1 + \frac{2\cos\theta(2\cos^2\theta - 1)}{1 - 3\cos^2\theta + 4\cos^4\theta}\right) \cdot \langle A_{RL} \rangle \tag{25}$$

$$J_{i} = 1 \rightarrow J_{f} = 1 遷移の場合$$

$$A_{RL}(\theta) = \left(1 + \frac{2\cos\theta}{5 + \cos^{2}\theta}\right) \cdot \langle A_{RL} \rangle$$

$$J_{i} = 1 \rightarrow J_{f} = 2 遷移の場合$$

$$(26)$$

$$1 \rightarrow J_f = 2 \quad \text{(a)} \quad \text{(b)} \quad \text{(c)} \quad \text{(c)$$

AZ	$\begin{array}{l} \text{Transition} \\ (J_i^{\pi}; I_i)[E_i] \rightarrow (J_f^{\pi}; I_f) \end{array}$	$[E_f]$	Admixture $(J_f^{-\pi})[E'_f]$	$ R_N/\Delta E $
14C	$(0^+,1)\to(2^-,1)$	[7340]	[7010]	31 ± 6
¹⁴ N	$\begin{array}{l} (1^+,0) \to (1^+,0) \\ (1^+,0) \to (0^+,1) \\ (1^+,0) \to (2^-,1) \end{array}$	[6203] [8624] [9509]	[5691] [8776] [9172]	$\begin{array}{c} 7.0 \pm 2.0 \\ 40 \pm 5 \\ 45 \pm 5 \end{array}$
¹⁵ O	$\left(\frac{1}{2}, \frac{1}{2}\right) \rightarrow \left(\frac{1}{2}, \frac{1}{2}\right)$	[11 025]	[10938]	37 ± 7
¹⁶ 0	$(0^+,0)\to(2^-,0)$	[8872]	[6917] [11 520]	$\begin{array}{c} 18\pm2\\ 9.5\pm0.7 \end{array}$
¹⁸ F	$(1^+,0)\to(1^-,0+1)$	[5605]	[5603]	590 ± 110
²⁰ Ne	$(0^+, 0) \to (1^-, 0)$	[11 270]	[11 262]	670 ± 7000

Table 1. Possible candidates for studying the PNC asymmetry in the light nuclei. The energy levels and the amplifier factors $|R_N/\Delta E|$ are given in keV and MeV⁻¹, respectively.

ここで、〈A_{RL}〉は

$$\langle A_{RL} \rangle = -2 \cdot \frac{\langle f | V_{PNC} | i \rangle}{E(J_f) - E(J_i)} \cdot \operatorname{Re}\left(\frac{M1}{E1}\right)$$
(28)

として定義される。

13.3 過去の実験の現状と将来

現在までに、重水素の光分解の詳細な計算は大阪グループ[14]やシアトルグル ープ[15]によって行われているが、核蛍光反応(NRF)によるパリティ非対称測 定は皆無である。重水素の光分解反応の場合、パリティ非対称は小さく10⁻⁷レ ベルであるので、軽い原子核の場合のパリティ非対称の精度の高い実験が求め られる。

¹⁹Fの場合、SPring-8[16]で実験が試みられた。SPring-8 では 109.9 keV の円偏 光ガンマ線がエネルギー幅 100 eV で10¹³個/秒の強度で得られるとの予定で実験 が進められた[17]。核蛍光反応 $\gamma_i A \rightarrow A^* \rightarrow \gamma_f A$ の収量 R は

$$R = \pi^2 \lambda^2 \cdot \frac{\Gamma}{\Delta E} \cdot \left(\frac{I_i \rho dN_A}{A_T}\right)$$
(29)

として計算できる[18]。ここで 109.9 keV の1/2⁻準位の共鳴幅は Γ = 7.7 × 10⁻⁷ eV であり[19]、ガンマ線の波長は $\lambda = \frac{hc}{2\pi}/E_{\gamma} \sim 1.79 \times 10^{-10}$ cm, d、 ρ 、 N_A 、 A_T 、 I_i 、は それぞれ、ターゲットの厚さ、密度、アボガドロ数、原子質量、ガンマ線強度 である。厚さ0.5 cmのLiF結晶 ($\rho = 2.64 g/cm^3$)を用いて、ガンマ線強度が 10¹³ であれば、毎秒 7.4×10⁸の収量が期待できる。得られる実験精度は、実験装 置の計数率の高さや崩壊してくる蛍光ガンマ線検出の測定立体角によるが、現 在の技術水準で、十分な精度が達成可能であろう。残念ながら、SPing-8 での実 験では 109.9 keV の光発生装置である Wigler が完全ではなく、楕円偏光してお り、円偏光成分は 60%程度となっていることがわかり、また用意していた検出 器は高い計数率に耐えられないことが判明した[17]。

実験成功には、コンプトン散乱ガンマ線の大きなバックグランドに耐えてか つ、高計数率測定が行える測定器が必要である。

現在、計画中の ERL 装置では分解能が 10⁻⁶⁻⁴ 程度の大強度ガンマ線ビーム が期待できる。こういった大強度、高分解能ガンマ線ビームを用いた核蛍光反 応によるパリティ非保存実験は過去には達成できなかった精度での測定が可能 となる。

弱い力と強い力がどのような結合をしているのかを探る試みは、原子核物理、 ハドロン物理の基本テーマでありながら、未だに基礎的な実験データの精度が よくない。このための基礎実験は極めて重要である。

本記事は大阪での仕事(参考文献[20])を基にして作成したものである。

参考文献

- [1] T.D. Lee and C.N. Yang, 1956 Phys. Rev. 104, 254 (1956).
- [2] S.C. Wu et al., Phys. Rev. 105, 1413 (1957).
- [3] R.P. Feynman and M. Gell-Mann, Phys. Rev. 109, 193 (1958).
- [4] N. Tanner, Phys. Rev. 107, 1203 (1957).
- [5] D.H. Wilkinson, Phys. Rev. 109, 1603 (1958).
- [6] E.G. Adelberger and W.C. Haxton, Ann. Rev. Nucl. Sci. 35, 501 (1985).
- [7] B. Desplanques, Phys. Rep. 297, 1 (1998).
- [8] W.C. Haxton, C-P. Liu and M.J. Ramsey-Musolf, Phys. Rev. C 65, 045502 (2002).

[9] E.D. Earle, A.B. McDonald, E.G. Adelberger, K.A. Snover, H.E. Swanson, R. von Lintig, H.B. Mak and C.A. Barnes, Nucl. Phys. A 396, 221c (1983).

[10] B.R. Holstein, Weak Interactions in Nuclei (Princeton, NJ: Princeton University Press) 1989.

[11] W.C. Haxton and E.M. Henley, Symmetries and Fundamental Interaction in Nuclei (Singapore: World Scientific) p 17, (1995)

[12] E.G. Adelberger, M.M. Hindi, C.D. Hoyle, H.E. Swanson, R.D. von Lintig and
W.C. Haxton, Phys. Rev.C 27, 2833 (1983).

[13] T. de Forest, and J.D. Walecka, Adv. Phys. 15, 1 (1966).

[14] M. Fujiwara and A.I. Titov, Phys. Rev. C 69, 065503 (2004).

[15] C.P. Liu, C.H. Hyun, and B. Desplanques, Phys. Rev. C 69, 065502 (2004).

[16] X.M. Marechal, T. Hara, T. Tanabe, T. Tanaka and H. Kitamura, J. Synchroton Radiat. 5, 431 (1998).

[17] K. Kawase, Doctor thesis, Osaka University.

[18] S.J. Skorka, The Electromagnetic Interaction in Nuclear Spectroscopy, edited by W D Hamilton (Amsterdam: North-Holland) p 283 (1975).

[19] F. Ajzenberg-Selove, Nucl. Phys. A 190 1 (1972), and see table 19.10

[20] A. Titov, M. Fujiwara, and K. Kawase, J. Phys. G. Nucl. Part. Phys. 32, 1097 (2006).

14 デルブリュック散乱による QED の非線形効果の探索

要旨

デルブリュック散乱は、光のエネルギーが変わらずに散乱するコヒーレント 散乱の一種である。QEDの非線形効果の検証のために 20 世紀初頭から研究され てきたが、未だに理論的にも実験的にも未解明な現象である。近年の光子-光子 散乱の理論計算の進展と、高輝度極単色ガンマ線が実現可能になってきたため に、ようやく本格的な研究が可能になってきた。その歴史的背景と展望につい て述べる。

14.1 デルブリュック散乱とは何か

光子が原子と相互作用した時に発生する現象として、光電効果、コンプトン 散乱、対生成等が良く知られている。光子が原子と相互作用した場合、最初に 存在していた光子はエネルギーを失うか消滅する。このような場合、散乱され た後の光子エネルギーを測定すると、入射した光子より低い。その一方、コヒ ーレント散乱と総称される光子と原子の相互作用が存在する。コヒーレント散 乱は、1)光子と原子内電子の散乱によるレーリー散乱、2)原子内の電場と光 子の相互作用によって陽電子と電子を対生成・対主滅の過程を得るデリュブル ック散乱、3)光と原子核のトムソン散乱、4)原子核の励起状態を経由する核 共鳴蛍光散乱から構成される。

光子エネルギーが1 MeV 以下の領域では、コヒーレント散乱の中でレーリー 散乱が主要な働きをする。エネルギーが少し高い1~10 MeV 領域ではデルブリ ュック散乱が主要な反応になる。このエネルギー領域より高い10 MeV 以上の領 域では原子核の巨大双極子共鳴(Giant Diople Resonance; GDR)が存在するため、 核共鳴蛍光散乱による光子の吸収過程が主な反応過程となる。なお、光子と電 子のトムソン散乱断面積は電子半径に比例していたように、光子と原子核との トムソン散乱も原子核の大きさに依存する。このため、光子と原子核のトムソ ン散乱断面積もエネルギーによらずほぼ一定である。5~8 MeV 領域では原子核 トムソン散乱がコヒーレント散乱への寄与が最大になる場合もある。これらの 反応は、原子内の電子数や、クーロン場の強さ、原子核の電荷などに依存する ため、散乱断面積は異なる。

デルブリュック散乱は、名前の由来となったマックス・デリュブルック(Max Delbrück)によって 1933 年に記述されたのが最初である。なお、デリュブルックはニールス・ボーアの初期の共同研究者の一人であり、物理学でデルブリュック散乱を含む研究をした後に、生物学に転向した。その後、1969 年に細菌の

ウイルス抵抗性は適応の結果によるものではなく突然変異によるものであるこ とを示し、ノーベル生理学・医学賞を受賞した。

デルブリュック散乱は、デルブリュックによって提案された後、20 世紀初頭 より QED の検証に用いることができることが指摘され、研究がすすめられてき た。デルブリュック散乱は、光子と原子内クーロン場との相互作用によって、 電子と陽電子が生成され、直ちに対消滅することで入射した光子と同じエネル ギーのγ線を生成する反応である(図 14.1 参照)。このとき、最初のγ線の入射 角以外にも散乱される。この反応は、古典的電磁気学では存在せず、QED にお ける非線形効果として記述される。ファインマンダイヤグラムで記述すると図 14.2 のようになる。このような非線形効果として予想される現象としては、光 子-光子散乱、光子の2光子への分割、原子核の電磁場における2光子の合体な どが知られている。

図 14.1 デルブリュック散乱の概念図

電子と陽電子が対生成-対消滅する過程は閉じており直接観測できない。これ は、言わば「真空の偏極」効果である。特に1.02 MeV 以下のリアルな粒子を生 成できるエネルギーより低い領域では、仮想的に粒子を生成、消滅させる量子 力学的な効果となる。そのため、20 世紀半ばから、QED の検証として数々の実 験が行われてきたが、未だ未解明な現象である。その理由として、コヒーレン ト散乱は既に述べたように、デルブリュック散乱、レーリー散乱、原子核トム ソン散乱、核共鳴蛍光散乱などの現象があり、従来の実験では、これらの反応 過程の和が観測されるのみであった。

実は、レーリー散乱も確立した現象ではなく、エネルギーが高くなると核種

に強く依存する核共鳴蛍光散乱の寄与が大きくなるため、原子核に固有の現象 なのか、コヒーレント散乱として一般的な傾向なのか区別がつきにくいという のが、一つの大きな理由である。

もう一つの理由として、従来の実験ではエネルギー可変で単色の大強度 γ 線 源を容易に使用できなかった点があげられる。これらの理由によって、実験的 にもデルブリュック散乱の反応断面積も不明である。

図 14.2 デルブリュック散乱のファインマングラフ k は入ってくる光子、k'は出ていく光子、x はクーロン場を示す

14.2 これまでの実験の歴史

コヒーレント散乱の性格上、単色γ線を入射ビームとして用いる必要がある。 レーザーコンプトン散乱γ線の実用化以前に、単色性の高いγ線源としては

- 1) 原子炉の熱中性子や、サイクロトロンで加速したイオンビームによって 生成された放射性同位体、
- 2) 原子炉の中性子捕獲反応によって発生する γ 線などがあり、

主に 1970 年から 1990 年にかけて実験に使われてきた。これらの実験は非常に シンプルであり、試料に γ 線を照射し、散乱した γ 線を Ge 半導体検出器で測定 するといったものである。一例として、1979 年の Rullhusen 等による実験をあ げる[1]。この実験では 150 mCi の強度の ²⁴Na が γ 線源として使われた。²⁴Na の半減期は約 15 時間であり、生成した直後から β 崩壊を始める。²⁴Na の β 崩壊 ではほぼ 100%の確率で、2754 keV と 1368 keVの γ 線が放出される。この 2本 の γ 線のコヒーレント散乱断面積を計測している。一般にコヒーレント散乱は、 前方の反応断面積が大きい。しかし、入射角から 90 度以上の後方になると、特 にデルブリュック散乱の寄与が相対的に大きくなるため、本実験では 60~120 度の角度で計測された。散乱試料としては、Th と Bi が用いられている。デルブ リュック散乱は、 γ 線と原子内クーロン場との相互作用であり、そのため、散乱 試料の原子番号(つまり、陽子数)が大きいほどクーロン場は強くなる。その ため、安定な物質では原子番号が大きい Bi や Th などのアクチノイドが用いら れてきた。なお、この結果は、当時の理論計算値と比較して 1.1 倍から 1.4 倍ず れるため、高次のクーロン補正項が必要ではないかと考えられていた[2]。

その後、アクチノイドを散乱試料として用いた実験で、3~6 MeV の領域で高 次のクーロン補正項でも説明できない非常に大きな散乱断面積が測定された[3]。 これが理論的には様々な可能性が検討されたが、精密な実験によってデルブリ ュック散乱の寄与ではなく、核共鳴蛍光散乱によるものであることが判明した。 それまで、よく用いられていたガンマ線源(²⁴Na など)とは、異なるエネルギ ーのガンマ線を生成するために、¹⁸¹Ta(n,γ)反応や、¹⁴¹Pr(n,γ)反応で発生する γ線を用いた散乱断面積の測定結果が行われた[4]。その結果、通常のコヒーレン ト散乱より 1~2桁大きい断面積が計測されている。これは、アクチノイド原子 核では、もともと核子が占めることができる殻模型における軌道の数多く、ま た変形度が大きくため 3~6 MeV の励起エネルギーの領域でも、Bi より軽い原 子核と比較して非常に状態密度が高く、大きな共鳴幅を有する励起状態が存在 するためである。この未知の共鳴状態のエネルギーが偶然、²⁴Na などのγ線の エネルギーと近いために大きな散乱断面積が計測されたのである。

放射性同位体、中性子捕獲γ線等を用いた実験がドイツで勢力的に 1990 年ま でに行われた後は、イスラエルでやはり原子炉の中性子捕獲γ線を用いて散乱 実験が行われた[5]のが目ぼしい結果であり、残念ながら研究はほとんど進展し ていなかった。

近年、日本だけでなくヨーロッパでも ERL-LCSγ 線による大強度 γ 線源が提 案されると、コヒーレント散乱の問題が再びクローズアップされるに至った。 そのような中、大強度 LCSγ 線に続く研究として、Habs等はフランスの l'Institut Laue-Langevin の大強度中性子反応炉で実験を行った[6]。この実験では、517 keV から 1951 keV の領域で対生成の閾値近傍の反応断面積を計測している。2012 年に対生成の新しい反応断面積が報告されており、対生成のような基本的な物 理現象も確定していない。この実験では、残念ながら十分な統計精度を得てお らず、はっきりしないが対生成の閾値近傍でデルブリュック散乱のリアルパー トとイマージナリーパートの干渉項の効果を示唆している。

理論の観点から最大の問題は、デルブリュック散乱断面積を求める方程式の 解は解析的に求めることができないので、数値計算で行う必要があるという点 である。そのため、1970年代に the lowest-order Born approximation を用いた計 算を行われるようになった[7]。デルブリュック散乱断面積に寄与する real part と imaginary part のうち、imaginary part については実験値を良く説明できたが、 real part については問題が残っていた。残念ながら、計算方法は大きな進歩はな く 1990 年代になっても the lowest-order Born approximation を元にした計算に、実験から経験的に得られた高次のクーロン効果等を取り入れた半経験的な値が使われたのみである[8]。この状況は現在でもほとんど変わっていない。

図 14.3 デルブリュック散乱の高次の効果

14.3 大輝度 LCSy 線によるデルブリュック散乱研究

このように、実験的にも理論的にもデルブリュック散乱は未解明の部分が多い。 大輝度の LCSy 線が実用化された場合には次のような進展があると期待で きる。

a. QED における非線形効果の実験データの提供

QED の非線形効果としては、理論的には、光子-光子散乱のプロセスがシンプ ルなだけ研究が進んでいる。しかし、大ざっぱに反応断面積は 10⁻⁷⁰ cm² 程度 であり、ニュートリノ反応断面積より遥かに小さい。そのため、光子-光子散乱 断面積の測定が近い将来に行われる事は期待できない。一方、デルブリュック 散乱はクーロン場と光子の散乱であり、理論的な背景は似ているが、計算はよ り複雑であるため、理論研究は比較的遅れている。しかし、大輝度 LCSγ 線源 が開発されれば、1970~1980 年代に放射性同位体を使った実験データより、精 度が上がる点、自由なエネルギーを選べる点で実験精度は劇的に改善するはず である。 b. デルブリュック散乱の高次の効果の検証

図 14.3 のファイマンダイアグラムに示すように、デルブリュック散乱には高 次の効果があるはずである。この高次の効果について若干の予言がなされてい るが(例えば、[9])は、理論的にも、実験的にもほとんどわかっていない。こ の高次の効果は古典的な電磁気学には存在しない現象であり、精密な測定がで きれば QED における高次効果の検証を直接的に行うことができると期待され る。

c. イマージナリーパートとリアルパートの干渉の測定

ガンマ線エネルギーを eV 単位でエネルギー制御することが出来るようにな れば、電子対生成閾値近傍の反応断面積を精密に測定することが可能となり、 デルブリュック散乱のイマージナリーパートと、リアルパートの干渉を精密に 測定することができる。

参考文献

- [1] P. Rullhusen, Nucl. Phys. A 313, 307 (1979).
- [2] P. Rullhusen, Phys. Lett. B 84, 166 (1979)
- [3] P. Rullhusen, Nucl. Phys. A. 382, 79 (1982)
- [4] U. Zurmuhl, et al., Z. Phys. 314, 171 (1983).
- [5] S. Kahane, Phys. Rev. C. 50, 2000 (1994).
- [6] D. Habs, Phys. Rev. Lett. 108, 18402 (2012).
- [7] P. Papatzacos, Phys. Rev. D. 12, 206 (1975).
- [8] H. Falkenberg, Atom. Nucl. Data Tables 50, 1 (1992).
- [9] Scherdin, et. al, Phys. Rev. D 45, 2982 (1992).

15 核共鳴蛍光での超放射 (Nuclear Super-Radiance)

要旨

原子レベルでの超放射の研究はすでに 60 年以上も前から開始されていたが、 2012 年になってようやくアメリカの研究者によって実現したようである。同じ ような現象は原子核を用いても起こすことが理論的には可能である。

15.1 はじめに

1964 年、タウンズ、バソフ、ブロホロフは「量子エレクトロニクス分野に重要な貢献をし、メーザー・レーザー原理に基づく発振器を発明した」としてノーベル物理学賞の栄誉に輝いた。レーザー(LASER: Light Amplification by Stimulated Emission of Radiation)は 20 世紀における偉大な革命的発明の一つと言える。レーザー光は指向性、収束性に優れており、発生する光波長は一定である。レーザー技術により、人類は、非常に高精度の物理測定法を発展させた。医療へ応用、レーザー溶接などの工学利用、CD や DVD での記憶媒体への利用、レーザープリンタへの応用など、我々の生活のあらゆる個所で快適性を提供した新しい応用技術の発展を促した。

レーザーのもう一つの特徴はナノからフェムト秒領域での極短パルス発振が できることである。これによってエネルギー密度が飛躍的に高まり、非線形光 学による高調波発振、レーザー核融合にも応用が広がってきた。

しかし、レーザーの実用的応用は、実際のところ、可視光の領域にとどまっている。自由電子レーザー(Free Electron laser (FEL))はレーザーを実用できる エネルギー領域を拡大する一つの手法として期待されている。残念ながら、自 由電子レーザーは物質の誘導放出を用いていないという意味で完全なレーザー とは言えない。時間的にきわめて短いパルス光は出せないなど難点もあり、レ ーザー特性のすべてを持ち合わせていないのが現状である。

15.2 原子核での「超放射」

将来の可能性として、原子核の励起状態を利用して、高エネルギー領域での ガンマ線の誘導放出を利用したレーザー発振を議論してみよう。可能性を探る ためのキーワードは、光の干渉効果と核共鳴蛍光反応を用いた「超放射」 (Super-Radiance)である。

良く知られたように、通常のレーザーは原子や分子レベルでの電子準位の励 起を用いている。もちろん、原子核レーザーは核共鳴蛍光反応 (Nuclear Resonance Fluorescence (NRF)) で励起される原子核励起準位を用いる。

図 15.1 原子核がガンマ線を吸収して励起されるモード(左)。原子核から崩壊したガンマ線が誘導放射により位相をそろえて放出される崩壊モード(右)。

図 15.2 レールスバーガー達による Nuclear Light House 効果の発見。⁵⁷Fe の薄 い円筒フォイルを高速回転することにより、メスバウアーのガンマ線の無反跳 吸収の条件が満足され、ガンマ線が円筒の中で共鳴状態として蓄えられる。

図 15.1 に示しているように、ガンマ線によって励起・誘導放射によって位相 のそろったガンマ線が放出されると、原理的には干渉効果により大強度ガンマ 線が放出されると期待できる。ミュンヘン大学の Habs たちはこういった可能性 を議論している[1]。もし、Coherent 励起が起こり Dicke [2] が最初に議論した超 放射(Super Radiance)を起こせるならば、FEL や XFEL にとって代わるような 原子核レーザーが可能となる。Smirnov たち[3]は⁵⁷Fe の核励起を利用した原子 核レーザーの可能性を 2005 年に議論している。現在、無反跳のメスバウアー効 果はエネルギー100 keV 程度のガンマ線までに観測され[4,5,6]、結晶構造を探る 有力な科学的手法として広く応用されている。

メスバウアーが用いた ⁵⁷Fe 原子核は 14.4 keV の M1 励起である。崩壊半減期 は 141 ナノ秒、準位の幅は 4.7 neV である。相対エネルギー幅は $\Delta E/E=3 \times 10^{-13}$ であり、最新のシンクロトロン光を用い、結晶のブラッグ反射でエネルギー幅 を選別したとしても10-13レベルの高分解能は実現不可能である。

一つの有力な方法は、やはり、メスバウアー効果を組み合わせることであろ う。図 14.2 は 2000 年にレールスバーガー達[7,8]の原子核灯台効果 (Nuclear Light Housing effect) の報告論文から引用した実験の模式図である。⁵⁷Fe 原子核の 14.4 keV に相当するシンクロトロン光が ⁵⁷Fe の円筒に入射される。高速回転してい る円筒内では 14,4 keV に一致したガンマ線は ⁵⁷Fe に吸収され、崩壊によりほぼ 等方に円筒内外に放出される。一部の放出ガンマ線は吸収条件が一致するので 再度、円筒内に蓄えられる。こういった効果が、円筒外へのある放出角度で強 い干渉効果を生んでいる。レールスバーガー達はガンマ線が通常の灯台のよう に平面方向に強く放出されるので、これを Nuclear Light House 効果と呼んだ。 今後、入射光が極端に強くなる時には、可視光レーザーのように誘導放出効果 が期待される可能性がある[9,10,11]。

Dicke による超放射を使ったレーザーは 2012 年 4 月にコロラド大学グループ によって初めて実現された[12]。実験結果は、790 nm の波長を持つ、1 個の光が Super – Radinance 効果によって閉じ込められ、新しいタイプのレーザーの可能 性が開かれたことを告げている。

原子核によるガンマ線の吸収、放出については、周囲の原子が集団で反跳効 果をキャンセルし無反跳効果が実現できるというメスバウアー効果が知られて おり、原子レベルよりも超放射が実現できる条件はむしろ整い易い側面もある。 基礎研究として、原子核レーザーの可能性を追求することは重要であろう。入 射ガンマ線の強度、偏光方向、⁵⁷Fe 円筒の厚さ、結晶構造、回転速度、冷却温 度など様々なパラメータを変化させての Nuclear Light House 効果によるガンマ 線干渉効果の観測が Dicke 超放射の実現に繋がるであろう。

参考文献

- [1] D. Habs et al., Eur. Phys. J. D 55, 279 (2009).
- [2] R.H. Dicke, Phys. Rev. 93, 99 (1954).
- [3] G.V. Smirnov et al., Phys. Rev. A 71, 023804 (2005).
- [4] T. Holstein and H. Primakoff, Phys. Rev. 58, 1098 (1940).
- [5] R.L. Mössbauer, Z. Physik 151, 124 (1958), Nature. 45, 538 (1958).
- [6] R.L. Mössbauer, Z. Naturforsch. 14a, 211 (1959).
- [7] R. Roehlsberger et al., Phys. Rev. Lett. 84, 1007 (2000).
- [8] R. Roehlsberger et al., Nucl. Inst. and Meth. A 467, 1473 (2001).
- [9] T. Roth et al., Phys. Rev. B 71, 140401(R) (2005).
- [10] I. Sergneev et al., Phys. Rev. Lett. 99, 097601 (2007).

- [11] I. Sergneev et al., Phys. Rev. B 78, 214436 (2008).
- [12] J.G. Bohnet, Z. Chen, J. M. Weiner, D. Meiser, M.J. Holland, and J.K. Thompson, Nature 484, 78 (2012).

16 ローレンツ不変性および短距離での重力法則の検証

要旨

100fs 程度の時間幅の極短ガンマ線パルスと、既存の dE/E~10⁻⁷ の分光器を組 み合わせることで、10TeV のエネルギースケールでのローレンツ不変性と量子 重力効果の検証が可能となる。また、³He 光分解反応により重力の余剰次元の 探索が可能である。これらの詳細について述べる。

16.1 序論

物質の基本要素と相互作用の解明は、素粒子物理学における重要な課題である。現在、物質を構成するクォークとレプトン、及び強い相互作用、弱い相互 作用、電磁相互作用は"標準理論"によって統一的に記述されている。一方、重力 相互作用は一般相対性理論によって取り扱われているが、

- (1) 標準理論が実験で決定すべき多くのパラメータを必要とすること、
- (2) 重力だけが(繰り込み可能な形式での)場の量子化に成功しておらず、標 準理論にも組み込まれていないこと、

(3) 電弱相互作用のゲージ対称性が破れるエネルギースケール (~100 GeV) が、 統一理論における自然なエネルギースケールと考えられるプランクエネルギー 10¹⁹ GeV) に比べて異常に小さく、電弱エネルギースケールを自然に与える機構 が標準理論には無いこと、

などの問題が残されている。これらの問題を解決するべく、超弦理論やその発 展形であるM理論、ループ量子重力理論など、微小なスケールでの時空構造に 修正を加えた理論が提唱され、精力的な研究が行なわれている。修正された時 空構造のもとでは、微小距離スケールでの重力の法則が巨視的スケールでのも のから変更を受けたり、微小距離スケールに対応する高エネルギーでの運動学 が古典的なものからずれるなどの変化が予想されている。それらの変化を高精 度な実験によって探索することにより、標準理論を越える理論の検証を行なう ことが可能である。

素粒子標準理論における光子は、

- ・質量ゼロ、
- ・スピン1、
- ・寿命無限大、
- ・波動とみなした場合の振動数に比例するエネルギーを持つ、
- ・物質との相互作用が、現在もっとも完成された量子場の理論である量子

電磁力学によって極めて高い精度で記述される、

などの際立った特徴を持っており、物理学の基本法則を実験的に検証するため の優れたプローブになり得る。この節では、エネルギー、角度、および時間に 関する分解能に優れるレーザー逆コンプトンガンマ線を応用した基礎物理実験 の可能性について述べる。

16.2 超短パルスガンマ線ビームによるローレンツ不変性の検証

ローレンツ不変性は、特殊相対性理論の公理のひとつであり、現在の素粒子 統一理論の根幹である。光子エネルギー E と運動量 p の間の分散関係は

$$E^2 = p^2 c^2 \tag{1}$$

である。ここで c は情報が空間を伝播する最大速度であり、特殊相対論では光速度に等しい。この関係式は、量子化された重力場を含む統一理論の多くのモデルでは、モデルを特徴づけるエネルギースケール Eog をパラメータとして、

$$E^{2}\left(1 + \frac{E}{E_{QG}} + O\left(\left(\frac{E}{E_{QG}}\right)^{2}\right)\right) = p^{2}c^{2}$$

$$\tag{2}$$

という形に変更される[1]。また光の伝播速度 v は

$$v = \frac{\partial E}{\partial p} \cong c \left(1 - \frac{E}{E_{QG}} \right)$$
(3)

で与えられる。光子の飛行時間のエネルギー依存性を検出することで、ローレンツ不変性を破る量子重力理論を検証することできる。光子の飛行距離を L とした場合、飛行時間 trof は

$$t_{TOF} = \frac{L}{v} \cong \frac{L}{c} \cdot \left(1 + \frac{E}{E_{QG}} \right)$$
(4)

したがって光速による飛行時間からの遅れは

$$\Delta t_{TOF} \cong \frac{L}{c} \cdot \frac{E}{E_{QG}} \tag{5}$$

で与えられ、エネルギー E、時間分解能 Δt を持つガンマ線パルスを用いた場合、

$$E_{QG} = \frac{L}{c} \cdot \frac{E}{\Delta t} \tag{6}$$

で与えられるエネルギースケールまでのローレンツ不変性の破れの探索が可能 である。

例として、エネルギー 10 MeV、時間幅 100 fs のガンマ線パルスを使用し、 飛行距離を 30 m とした場合、*E*_{QG}~10 TeV となり、LHC などの高エネルギー 加速器実験[2,3]に匹敵するエネルギースケールの探索が可能となる。このような 超短パルスガンマ線の時間分解能を損なわずに測定を実現する検出器としては、 超高速のストリークカメラが候補となる。ただし検出器の時間応答のエネルギ 一依存性を消去するため、ことなる飛行距離 *L* に対する測定を行なう必要があ る。またこの実験は、光速度の絶対値ではなく飛行時間のエネルギー依存性を 測定するものなので、*L* 自体の絶対精度は要求されない。しかし、ビームの角度 広がりは飛行距離のバラつき、したがって飛行時間に対する分解能の悪化に直 結するため、10⁶ 以内でなければならない。この点で、レーザー逆コンプトン法 によって生成される高品質ガンマ線ビームは決定的に有利である。現在提案さ れている新しいレーザー逆コンプトンガンマ線源の場合、レーザーと電子の衝 突点の直径は 20 μm (RMS) であり、30 m 離れた検出点において、20 μm 程度 の位置分解能を持った検出器、または同程度の直径のコリメータを備えた検出 器を用いれば、ガンマ線の角度広がりを 10⁶ 程度に抑えることが可能である。

その他、ガンマ線の経路上に存在する媒質が持つ分散特性の影響がバックグ ラウンドになると予想されるため、高真空の管内でガンマ線を飛行させる必要 がある。その上でさらに残留ガスの影響を抑えるため、ビーム管をさまざまな 圧力、さまざまな種類の気体で充填し、さまざまなエネルギーでの測定を行な って、ガンマ線領域での気体原子(原子核)の分散特性をスタディすることが 必要である。

なお、ガンマ線バースト天体からの高エネルギーガンマ線の時間分布データ に対して上記のモデルを当てはめることにより、*E*_{QG} > 10²⁴ eV という制限が得 られているが[4]、レーザー逆コンプトン法によって生成されるガンマ線ビーム を用いる方法は、ガンマ線の発生機構や、飛行経路上の媒質の影響についての 曖昧さが無い点で有利である。

16.3 コンプトン効果の精密測定によるローレンツ不変性の検証

前節ではゲージボソンである光子のみの分散関係に着目したが、この節では フェルミオンの分散関係が量子重力効果による影響を受けた場合について考察 する。

質量 m、エネルギー E、運動量 pのフェルミオンに対して成り立つ分散関係

$$E^2 = m^2 c^4 + p^2 c^2$$
(7)

で与えられる。これに対して量子重力による補正が加わった場合、(7)式は量子 重力の質量スケール Mog および補正項の次数 n をパラメータとして

$$E^{2} = m^{2}c^{4} + p^{2}c^{2} \left(1 + \left(\frac{|pc|}{M_{QG}c^{2}} \right)^{n} \right)$$
(8)

という典型的な形に変更される[5]。これに伴って、たとえばコンプトン効果に よる光子の波長の変化は、通常の

$$\lambda' - \lambda = \frac{h}{m_e c} \left(1 - \cos \theta \right) \tag{9}$$

から

$$\lambda' - \lambda = \frac{h}{m_e c} \left(1 - \cos \theta \right) + \lambda \lambda' \frac{\left| P \right|^{2+n}}{2M_{OG}^{\ n} m_e} \tag{10}$$

に変更される[5]。ここで λ 、 λ ' はそれぞれコンプトン散乱前後の光子の波長、 *m*_e は電子の静止質量、 θ は散乱前後の光子の運動量ベクトルのなす角であり、 *P* は散乱電子の運動量である。(9) 式および(10) 式から、量子重力効果による λ ' への補正量(相対値) δ は、エネルギー *E* の入射光子に対して

$$\delta = \frac{\lambda |Pc|^{2+n}}{2hc \left(M_{QG}c^{2}\right)^{n} m_{e}c^{2}} = \frac{|Pc|^{2+n}}{2E \left(M_{QG}c^{2}\right)^{n} m_{e}c^{2}}$$
(11)

で与えられる。たとえば n=1 の場合、量子重力効果の有無による散乱光子のエネルギーの差 $\Delta E'$ は、図 16.1 に示されるような入射光子エネルギー依存性を持つ。したがって、1 eV 程度のエネルギー広がりを持つ 1~10 MeV 領域のレーザー逆コンプトンガンマ線ビームと 10⁻⁷ 程度の波長分解能を持つ結晶分光器 [6]を用いてコンプトン散乱の高精度測定を行なうことにより、10 TeV 程度のエネルギースケールでの量子重力効果を検証できると期待される。

図 16.1 量子重力効果による散乱光子のエネルギーのずれ n=1、θ=90°の場合

16.4 ピコメートル以下の領域での未知相互作用の探索

多くの重力を含む統一理論に共通する特徴は、空間の次元数が 4 以上の時空 を導入することによって理論の整合性、具体的には量子異常の消去や物理量の 発散の抑制を図っていることである。特に最近注目されている、M 理論のソリ トン解である"ブレーン時空解"は、全時空が、我々が経験する通常の四次元時 空と、重力だけが伝播可能な n 次元の余剰次元空間から構成されているとする ものであり、

四次元時空内での重力が他の相互作用に比べて極端に弱いという経験的事実

・ COBE, WMAP などの宇宙背景輻射の観測結果から示唆されている宇宙項の 存在

などを自然に説明できるというメリットを備えている[7,8,9]。一方、ブレーン時 空解は、余剰次元のサイズよりも小さいスケールでの重力のふるまいが、通常 の四次元時空で経験される逆二乗則からずれることを予言するため、短距離で の重力の距離依存性を測定することによって、それらの理論を実験的に検証す ることが可能である。

現在までのところ、重力の逆二乗則の検証は、主にバルクな物体を用いた Cavendish タイプの実験によって行なわれており、~60 µµ 以上の範囲で異常は見 出されていない[10]。またごく最近、 Bose-Einstein 凝縮した中性原子雲を用い て、数百vµ~1 µµ の領域で検証を行なう実験が提案された[11]。しかし、これら の中性原子を用いた実験では、数 µµ 以下の領域では電磁相互作用による Van der Waals 力(または Casimir-Polder 力)が支配的となり、重力の異常を検出す る上で重大なバックグラウンドとなってしまう、という問題がある。Van der Waals 力は、試験粒子の電気分極率に比例するため、その影響を抑えるためには 電気分極率の小さい粒子を使用する必要がある。中性子は、

・ 有限の質量を持つため、重力に対して感度がある。

・ 電気的に中性であり、クーロン相互作用に対して不感である。

・ 電気分極率が中性原子の 10⁻¹⁸ 倍以下と極めて小さく、Van der Waals 力等の高 次の電磁相互作用の影響も十分小さい。

という長所を備えており、1 µm 以下の距離での微小な相互作用の探索に利用し 得る試験粒子としてはほぼ唯一のものである。実際、冷中性子小角散乱による nm オーダーの領域の探索計画が J-PARC 核破砕中性子源等で進められている [12]。ここでは、さらに短距離である 10 fm ~ 1 pm の領域での探索を目的とし て、光核反応によって放出される陽子・中性子対を利用した実験を提案する。

余剰次元による重力の寄与は、典型的には有限レンジの湯川型ポテンシャル で表すことができ、重力質量 *M* を持つ重力源が発生する全重力ポテンシャルは

$$V(r) = V_G(r) \times \left(1 + \alpha_{ED} \exp(-r/\lambda)\right)$$

$$V_G(r) = G \frac{M}{r}$$
(12)

と表すことができる。ここで、r は重力源の重心からの距離、G は万有引力定数、 α_{ED} は余剰次元重力の相対的な結合定数、 λ は余剰次元重力のレンジである。このような、数十 fm の有限レンジを持つポテンシャルとしては、原子核の光分解の際に同方向に放出される 2 個の陽子間の終状態相互作用が代表的な

例と言える。陽子間の終状態相互作用エネルギーはスクリーニングされたクー ロン相互作用

$$H_{FSI} = \alpha_{EM} \frac{e^2}{r} \cdot \exp\left(-\left(r/R\right)^n\right)$$
(13)

で表すことができる[13]。ここで α_{EM}、e はそれぞれ電磁相互作用の結合定数お よび電気素量である。スクリーニング半径 R および距離 r の冪 n は現象論的 なパラメータであり、実験データを再現するように決める必要がある。この終 状態相互作用は2つの陽子の二重微分断面積に顕著な影響を及ぼす。図16.2は ³He の三体光分解における 2 陽子放出の二重微分断面積の理論計算例である。 この例の場合、三体運動学変数 S が入射ガンマ線エネルギー (55 MeV) から三 体分解の閾値 7.72 MeV を差し引いた 47.8 MeV 近傍に2 陽子相関のピークが 生じ、クーロン斥力による終状態相互作用は 2 つの陽子が同方向に放出される 確率を抑制する効果を持つことがわかる。2 陽子の相関ではなく陽子-中性子対 の相関に着目し、図 16.2 の 2 陽子相関ピークに相当する陽子-中性子相関ピーク の強度の増減を観測すれば、クーロン相互作用の影響を避けて未知の相互作用 を探知することが可能となる。2陽子間のクーロン終状態相互作用による効果の 大きさを基準として探索感度を見積もった場合、陽子-中性子相関ピークの強度 を 10%の精度で測定できれば α_{ED} ~10³⁴、10⁻⁵ の精度で測定できれば α_{ED} ~10³⁰ の感度が達成されると期待される。*α_{FD}*について従来の実験で排除された領域と、 本提案で探索が期待される領域を図16.3に示す。

本提案では、中性子の電荷および電気分極率による相互作用が無視できるため、磁気モーメント相互作用が主要なバックグラウンドとなることが予想される。陽子-中性子の磁気モーメント相互作用の大きさは、距離 10 fm において 60 eV、100 fm において 0.06 eV である。一方余剰次元重力のポテンシャルエネルギーは $\alpha_{ED} = 10^{34}$ の場合、10 fm では 1200 eV、100 fm では 120 eV であるため +分な S/N 比が得られる。 $\alpha_{ED} = 10^{30}$ の場合はそれぞれ 0.12 eV、0.012 eV となり、磁気モーメント相互作用を精密に取り込んだ理論計算との比較が必要となる。

図 16.2 ³He 光分解における 2 陽子放出二重微分断面積 (Alt-Grassberger-Sandhas 形式による第一原理計算[13])。n = 4 を仮定。S は三体運動学の曲線に沿った弧の長さ。(θ_{p1}, ϕ_{p1})、(θ_{p2}, ϕ_{p2})は入射ガンマ線ビーム軸を基準とした 2 個の陽子の放出方向を表す仰角と方位角。

図 16.3 従来の実験によって探索された (λ, α_{ED})の領域[11]、および計画中の実験(本提案(実線: $\alpha_{ED} = 10^{34}$ 、点線: $\alpha_{ED} = 10^{30}$)、冷中性子散乱[12]、ボーズ・アインシュタイン凝縮原子法[11])で期待される探索範囲。点線は通常の原子を用いた測定における原子間力の妨害による測定限界の目安。

16.5 まとめ

素粒子や原子核を利用した低エネルギー超精密実験は、精度のフロンティア を追究することによって基本的な問題を解明しようとする方法論であり、エネ ルギーやビーム強度のフロンティアを追究する高エネルギー物理実験とは独立 かつ相補的な役割を果たしてきた。このような方法論が歴史的発見に結びつい た例としては、マイケルソンとモーリーによる干渉計を用いた光速不変原理の 検証、ウーらによる原子核ベータ崩壊におけるパリティ非保存の実証、大気ニ ュートリノ観測によるニュートリノ振動の発見、宇宙背景放射の高精度測定に よるダークエネルギー・ダークマターの発見などが挙げられる。最近では、新 しいツールとして、高密度なボーズ・アインシュタイン凝縮中性原子気体、大 強度超冷中性子源、極低温粒子検出器などの開発が進んでいる。

光子は、性質がもっとも解明されている素粒子のひとつである。エネルギー 分解能、時間分解能、角度広がりなどの面で優れた特性を備える次世代ガンマ 線ビームが実現すれば、光子の持つ本質的優位性を十二分に生かした高精度実 験が可能となり、まったく新しい精密基礎物理研究の展開が期待される。

参考文献

[1] G. Amelino-Camelia, J. Ellis, N.E. Mavromatos, D.V. Nanopoulos and S. Sarkar, Nature 393, 763 (1998).

[2] I. Antoniadis, N. Arkani-Hamed, S. Dimopoulos and G. Dvali, Phys. Lett. B436, 257 (1998).

[3] S. Dimopoulos and G. Landsberg, Phys. Rev. Lett. 87, 161602 (2001).

[4] J. Ellis, N. E. Mavromatos and D.V. Nanopoulos, gr-qc/9909085, (1999).

[5] K. Nozari and S.D. Sadatian, Gen. Relativ. Gravit. 40, 23 (2008).

[6] E.G. Kessler Jr. et al., Nucl. Instr. Meth. A457, 187 (2001).

[7] L. Randall and R. Sundrum, Phys. Rev. Lett. 83, 3370 (1999).

[8] N. Arkani-Hamed, S. Dimopoulos and G. Dvali, Phys. Lett. B429, 263 (1998).

[9] N. Arkani-Hamed, S. Dimopoulos and G. Dvali, Phys. Rev. D59, 086004 (1999).

[10] D.J. Kapner et al., Phys. Rev. Lett. 98, 021101 (2007).

[11] S. Dimopoulos and A.A. Geraci, Phys. Rev. D68, 124021 (2003).

[12] Y. Arimoto et al., NOP collaboration, J. Phys. Soc. Japan, in press.

[13] A. Deltuva, A.C. Fonseca and P.U. Sauer, Phys. Rev. C72, 054004 (2005).

17 高輝度 γ 線発生のためのレーザー蓄積装置

要旨

高エネルギー加速器研究機構(KEK)でのレーザー蓄積装置(光共振器)の 開発の経緯、現状を紹介し、γ線高輝度化のための設計指針を示す。

17.1 レーザー蓄積装置開発の経緯と現状

我々は加速器のビーム診断装置として長年単純なファブリーペロー光共振器 を使ったレーザーワイヤービームプロファイル測定装置を開発および改良を行 い実用に供してきた。2000年ごろからX線やγ線生成を逆コンプトン散乱によ り効率良く行う為に、この光共振器技術を使ってモードロックレーザー発信器 からのパルスレーザー蓄積実験を開始した。2004年、2枚の高反射率ミラーで 構成した光共振器にパルスレーザーを蓄積することに成功した。その後、レー ザー収束サイズ 60 から 10 ミクロンメータ (rms) 以下を実現する為、共鳴状態 安定化フィードバック技術改良を行ってきた。その開発過程で2枚ミラー光共 振器から4枚ミラー光共振器への変更が本質的に重要であることを理解した。 2012年現在、レーザーパルス蓄積装置利用実験を4テーマ進めている。

写真 17.1 3 次元 4 枚ミラー光共振器 in ATF Damping Ring 写真 17.1 に示す 3 次元 (3D) 4 枚ミラー光共振器を 2011 年の秋 ATF Damping Ring[1]に設置して、現在 24MeV の γ 線フラックス 10⁹以上を衝突点下流 13m の

位置にある検出器 (BaF₂) で測定できている。写真の中央にある電子ビームダクトにはレーザーが通過できる小さな穴があり、両サイドの 2 ヶ所にそれぞれ高反射率ミラーがマウントされている。この実験ではウェストサイズ 14µm、フィネス 4100、レーザー強度増大率 1200 (入射マッチングと最適カップリング条件を十分に満たしていない為)が実現している[2,3]。

写真 17.2 2 枚ミラー光共振器 at LUCX by 2011

電子線形加速器を使った高輝度 X 線生成実験では、40MeV マルチバンチ電子 ビームと光共振器内のレーザーパルスによる逆コンプトン散乱 X 線生成を行っ ている。既に 2 枚ミラー光共振器による X 線イメージング取得実験を常伝導 S-band 電子線形加速器と写真 17.2 の 2 枚ミラー光共振器で 2011 年に行った。 凹面ミラー間の距離は 42cm で、レーザーパルスと電子バンチの衝突が 2.8nsec 毎に起こり、100 bunch/pulse 運転の時に X 線ミクロパルス 100 の生成を確認し た。この時の 30keV X 線フラックス 2x10⁵ を衝突点から 2m 下流の検出器で確認 できた。さらに X 線フラックスを上げる為にレーザー強度を上げた時に、ミラ ーの誘電多層膜が破壊した。そこで現在中型の二次元 (2D) 4 枚ミラー光共振器 製作を進めている。この装置は図 17.1 のように成る予定で、2012 年秋に X 線生 成実験を行い、X 線フラックス 10⁸ 以上を実現することに成る。電子パルス当り の電子バンチ数は 1000 バンチで、レーザーパルスエネルギー 6mJ 以上を実現 する。共振器の一周の距離は 7.56m、衝突角 7.5 度であり、レーザーパルス 9 個 が共振器内を回ることに成る。この実験では 2 inch のミラーを使用する。仮定 しているビームパラメータを表 17.1 に示す[4,5,6]。

電子ビーム		レーザー	
エネルギー	30 MeV	波長	1064 nm
バンチ電荷	400 pC	パルスエネルギー	6mJ 以上
rms バンチ長	3 ps	rms パルス長	3 ps
バンチ繰り返し	1000 /pulse	パルス繰り返し	357 MHz
規格化エミッタンス	5 mm-mrad	光蓄積増大率	500 倍
(x/y)			
rms 衝突点サイズ (x/y)	33/33 µm	rms 衝突点サイズ(x/y)	55/25 µm
rms エネルギー広がり	0.9%	衝突角度	7.5 度

表 17.1 LUCX 小型電子線形加速器のビームパラメータ

図 17.1 2D4 ミラー光共振器 at LUCX from 2012

量子ビーム基盤技術開発プログラム受託事業で進めている最も重要な超伝導 線形加速器 (STF)を使った高輝度X線発生実証実験においても、2D4枚ミラー 光共振器を使う。現在、電子ビーム生成と加速調整が終わり、10µm 電子ビーム 収束調整およびレーザーパルスとの正面衝突実験を秋に開始する状況になって いる。ここでは 2 枚の平面ミラーを円筒ミラーにすることによって、衝突点で のレーザープロファイルを円形にする予定である。サイズは 20µm 以下を目指 した調整を行っている。2D 4 枚ミラー光共振器では、共振器内での各ミラーへ のレーザーパルスの入射角度が垂直でない為に、球面ミラーの焦点距離が tangential 方向と sagittal 方向で以下の式に示すようになる。これによって、垂直 と水平のレーザービームサイズが衝突点で一致しない。この効果をキャンセル する方法として、3D 4 枚ミラー光共振器や円筒ミラーを使った 2D 4 枚ミラー光 共振器を開発した。2D での実験は世界初である[7,8]。装置の衝突点領域を図 17.2 に示す。

$$f_t = \frac{\rho}{2} \cos(\alpha/2)$$
$$f_s = \frac{\rho}{2\cos(\alpha/2)}$$

ここで、 f_t 、 f_s は球面反射ミラーの tangential 方向と sagittal 方向の焦点距離、 ρ は 曲率半径、 α は反射全角である。

超伝導電子線形加速器によって、5Hz で 162,500 bunches/pulse、10mA ビーム を逆コンプトン散乱 X 線生成の為に 40MeV まで加速して、衝突点で 10µm まで 絞り込む。一方、レーザーパルス 2 個が一周 3.69m のリング光共振器内を回り、 球面高反射率ミラー間の中点で 20µm 以下に収束され、電子ビームと正面衝突 する。衝突繰返しは 162.5MHz、すなわち 6.15nsec 間隔で起きる。1msec の衝突 時間の間に超前方に散乱される光子数は 10¹⁰ 個程度になる予定である。ビーム パラメータを表 17.2 に示す[9]。

電子ビーム		レーザー	
エネルギー	40 MeV	波長	1047 nm
バンチ電荷	61.5 pC	パルスエネルギー	30mJ
rms バンチ長	5 ps	rms パルス長	3 ps
バンチ繰り返し	162500 /pulse	パルス繰り返し	162.5 MHz
規格化エミッタンス	0.5 mm-mrad	光蓄積増大率	3000 倍
rms 衝突点サイズ (x/y)	10/10 µm	rms 衝突点サイズ(x/y)	20/20 µm
rms エネルギー広がり	0.1%	衝突角度	0.0 度

表 17.2. 量子ビームプログラム用 STF 超伝導電子線形加速器の ビームパラメータ

図 17.2 STF 量子ビーム基盤技術開発プログラム実験の 2D4枚ミラー光共振器と正面衝突ビーム軌道

図 17.3 小型レーザーワイヤ用4枚ミラー光共振器モデル

次は4番目の開発プログラム、4枚ミラー光共振器技術を使ったレーザーワイ ヤの開発状況報告である。加速器内のビームの3次元プロファイル測定を高速・ 高精度で行える小型のレーザーワイヤ開発である。1.4nsec 間隔のビームを分離 してそれぞれのプロファイルを高速・高精度で測定できる。高速検出器の開発 も行っているが、ここでは光共振器の開発状況について報告する。レーザー光 学系や加速器内に入れる真空装置等の現実的な状況を考慮した装置として、長 さ105mm 以内の2D光共振器を製作している。図17.3 は検討モデルを示し、レ ーザーのウェストサイズ垂直方向数ミクロン以下 (rms) を目標に検討した結果 を表 17.3 に示す[10]。

表 17.3 2D 小型 4 枚ミラー

光共振器比較

Length L	412	206	103
[mm]			
Distance d	116	58	29
[mm]			
Curvature	408	204	102
ρ [mm]			
One turn	1680	840	420
[mm]			
α [radian]	0.27	0.27	0.27
Waist size	40.0/	28.5/	20.0/
(x/y) [µm]	14.6	10.5	7.0

写真 17.3 4 枚ミラーサポート 調整装置

ウェストサイズを数ミクロン以下にするので、写真 17.3 に示すような1 inch ミラーホルダーを含めた装置の大きさは 25cm 程度になった。現在、真空チェ ンバー内に装着する準備を進めている。このレーザーワイヤの移動架台や位相 シフターとして単一周波数の CW レーザーワイヤ用に開発したものを使って、本 パルスレーザーワイヤの性能試験を行うことに成っている。検出器に入る γ 線 数は単一周波数の CW レーザーワイヤと比べて 2000 倍以上に成る予定である。

17.2 2枚ミラー光共振器の原理

写真17.4 に示した剛性のある 熱膨張率の小さい材料で製作し た円筒の両端に高反射率誘電多 層膜ミラーを取り付けた光共振 器の一方のミラーからレーザー パルスを入射する。対向するミ ラーは共鳴状態を実現する為に ピエゾアクチュエータ上に取り 付けている。サブオングストロ ームの精度でミラー位置を制御 でき、3 ミクロンメータ程度のダ イナミックレンジで動作可能な

写真 17.4. 2004 年度開発用レーザー パルス蓄積共振器

ピエゾアクチュエータが必要である。この光共振器製作上重要な技術は、円筒 構造体の寸法調整、ミラーアライメントおよびピエゾアクチュエータへのミラ ーマント法である。まず、共鳴状態に関する原理について簡単に説明する [11,12,13]。

レーザーの振幅の反射率、透過率、1パスの減衰率(散乱と吸収を含む)をそれぞれ r_i , t_i , x とする。2 枚の鏡で共振器を組んだ時の有効反射率として、 $R_{eff}=r_2 \cdot x \cdot r_1 \cdot x$ とおく。2 枚ミラーの透過率、反射率それぞれについて、振幅を無限回足し合わせると、

$$t_{cav} = t_1 x t_2 [1 + R_{eff} e^{i\theta} + (R_{eff} e^{i\theta})^2 + \cdots] = \frac{t_1 x t_2}{1 - R_{eff} e^{i\theta}}$$

$$r_{cav} = r_1 - t_1 x r_2 x t_1 e^{i\theta} [1 + R_{eff} e^{i\theta} + (R_{eff} e^{i\theta})^2 + \cdots] = r_1 - \frac{t_1 x t_2 e^{i\theta}}{1 - R_{eff} e^{i\theta}}$$

$$s_{12} = t_1 \sqrt{x} [1 + R_{eff} e^{i\theta} + (R_{eff} e^{i\theta})^2 + \cdots] = \frac{t_1 \sqrt{x}}{1 - R_{eff} e^{i\theta}}$$

$$s_{21} = t_1 x r_2 \sqrt{x} [1 + R_{eff} e^{i\theta} + (R_{eff} e^{i\theta})^2 + \cdots] = \frac{t_1 x r_2 \sqrt{x}}{1 - R_{eff} e^{i\theta}}$$

ここで、 θ は共振器中をレーザーが一往復したときの位相変化を表す。 s_{12} はレ ーザー入射方向、 s_{21} は後退方向の蓄積レーザー振幅である。次の関数 A(R) を 定義して、振幅の絶対値の 2 乗によってそれぞれのパワーを求めると、以下の ように成る。関数 1/A(R) は Airy Function を特徴づける量である。

$$A(R) = (1 - Re^{i\theta})(1 - Re^{-i\theta}) = (1 - R)^{2} + 4R\sin^{2}\frac{\theta}{2}$$

$$T_{cav} = |t_{cav}|^{2}, R_{cav} = |r_{cav}|^{2}, S_{12} = |s_{12}|^{2}, S_{21} = |s_{21}|^{2}, S_{cav} = \frac{1}{2}(S_{12} + S_{21})$$

$$T_{cav} = \frac{T_{1}T_{2}X}{A(R_{eff})}$$

$$R_{cav} = (R_{1} + T_{1}) - \frac{T_{1}R_{eff}\left[\frac{1}{R_{eff}} - R_{eff} - T_{1}\frac{R_{eff}}{R_{1}}\right]}{A(R_{eff})}$$

$$S_{cav} = \frac{T_1 \sqrt{X} \left(1 + R_2 X\right)}{2A \left(R_{eff}\right)}$$

Scavの1/2は、パルスレーザーの場合入射レーザーが進む方向と反射で後退する方向 にレーザーパルスは同時に存在しない為に必要である。単一周波数の CW レーザー の場合は、進行波と後退波が同時に存在するので、1/2を1にしなければならない。

Finesse は 1/A(R) が最大値の 1/2 を与える θの値から得られる。

$$\theta_{1/2} = \frac{1-R}{\sqrt{R}}$$
$$F(R) = \frac{2\pi}{2\theta_{1/2}} = \frac{\pi\sqrt{R}}{1-R}$$

以上の式を使えば、2枚ミラー光共振器の多くの特性を評価できる。現在、我々 は低損失(10ppm 以下)で高反射率ミラー(99.999%以上)、そしてミラー表面 でのレーザー電磁場に対する耐性閾値の高い純粋石英材に誘電多層膜を蒸着す る技術を試験する段階に到達している。このミラー製作と光共振器共鳴状態維 持実験に成功すれば、100,000倍以上の増大率も達成可能になる。しかし、既に レーザー蓄積による熱的な効果も検出されているので、ミラーの冷却法も取り 入れなければ10万倍は達成できないであろう。

17.3 2枚ミラー光共振器から4枚ミラー光共振器へ

複雑な 4 枚ミラー光共振器を使う理由を説明する。共振器内のレーザーを安 定に小さく収束させる為に横方向のミラーアライメント要求精度をそれぞれの 光共振器で計算すると 100 倍以上の差がある。以下の計算が一例である[14,15]。

図 17.4 の共心型と共焦点型の差からアライメント要求精度の差が生まれている。レーザーの波長 λ=1064nm 、ビームウェスト 25µm (rms) の共通条件下でミ スアライメントに対する感度を比較する。表4は計算に使った光共振器のタイ プを示す。

図 17.4 光共振器の構成

2 枚ミラー共振器の場合、共振器の中心を出発点として 1 周分の ABCD 伝搬 行列は以下のように成る。

 $\begin{pmatrix} A & B \\ C & D \end{pmatrix} = \begin{pmatrix} 1 & l/2 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -1/f & 1 \end{pmatrix} \begin{pmatrix} 1 & l \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -1/f & 1 \end{pmatrix} \begin{pmatrix} 1 & l/2 \\ 0 & 1 \end{pmatrix}$

ここでlはミラー間隔、f は薄レンズとした凹面ミラーの焦点距離である。この式から l=0.42mの場合、ウェストサイズ 25 μ m を得る為に f=0.10513m(つまり曲率半径 $\rho=0.21026m$)のミラーが必要になる。

呼び名	共振器タイプ	1 周期の距離	要素間の距離
А	2 枚ミラー	0.21 m	0.105 m
В	2枚ミラー	0.42 m	0.21 m
С	2枚ミラー	0.84 m	0.42 m
D	4枚ミラーリング型	0.84 m	0.21 m
Е	4枚ミラーリング型	1.68 m	0.42 m
F	4 枚ミラーリング型	3.36 m	0.84 m

表 17.4 比較する為の共振器タイプ

4枚ミラー共振器の場合、同様に伝搬行列は以下のように成る。

 $\begin{pmatrix} A & B \\ C & D \end{pmatrix} = \begin{pmatrix} 1 & l/2 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -1/f & 1 \end{pmatrix} \begin{pmatrix} 1 & d_2 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & d_0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & l \\ -1/f & 1 \end{pmatrix} \begin{pmatrix} 1 & l/2 \\ 0 & 1 \end{pmatrix}$ ここでは凹面ミラーへの入射角が垂直に近くて収差が十分小さいという近似で ミラーを薄レンズに置き換えた。平面ミラーは単位行列、凹面ミラー間距離 *l*、 それぞれの遅延路長を d=d_1+d_0+d_2 とした。例えば、一周 0.84m、*l*=d_1=d_0=d_2 の場 合、ウェストサイズ 25µm を得る為に f=0.1039m(つまり曲率半径 ρ =0.2078m) のミラーが必要になる。

次にミスアライメントの影響を評価する為に、図 17.5 のエラーを含めた計算 が必要になる。ABCD 行列を 3 行 3 列に拡張すれば全ての場合について計算で きるが、紙面の都合で計算方法の説明を省略して、タイプAとDの場合の結果のみを示す。

図 17.5 光学要素のミスアライメント

タイプAの結果は表 17.5 に示すように、ミラー上での軌道変化量数十 mm お よび角度変化量数百 mrad になっているが、タイプ D の結果は表 17.6 に示すよ うに、ミラー上での軌道変化量数 mm 以下および角度変化量十数 mrad 以下にな る。この差は、実際に光共振器を光学ベンチに set-up した場合に、共鳴状態を 簡単に実現できることから実感できる。

表 17.5 A の場合の結果

要素間のミスアライメント	1 での軌道位置	1 での軌道角度
1位置 (1mm)	25.7 mm	500 mrad
1角度 (1 mrad)	1,38 mm	26.8 mrad
2位置 (1mm)	26.8 mm	500 mrad
2角度 (1 mrad)	1.43 mm	26.8 mrad

表 17.6 D の場合の結果

要素のミスアライメント	1 での軌道位置	1 での軌道角度
1位置 (1mm)	1.07 mm	14.9 mrad
1角度 (1 mrad)	0.22 mm	3.10 mrad
2位置 (1mm)	2.06 mm	14.9 mrad
2角度 (1 mrad)	0.43 mm	3.10 mrad
3位置 (1mm)	0 mm	0 mrad
3角度 (1 mrad)	0.212 mm	1.03 mrad
4位置 (1mm)	0 mm	0 mrad
4角度 (1 mrad)	0.0045 mm	1.03 mrad

17.4 4枚ミラー光共振器の特徴

4 枚ミラー光共振器はミスアライメントに強い以外に次の優れた特徴を有している。

A. レーザー入射ミラーを平面ミラー又は円筒ミラーにして、入射するレー ザービームをほぼ平行ビームにすることで入射マッチングが容易に行える。

B. 反射光が入射レーザー軌道と異なるので、実際に共振器内に透過するパワ ーを常時測定できる。

C. モードロックレーザーの発振周波数に光共振器の一周周期を合わせる場合、ウェスト調整とほぼ分離させた調整が可能である。

D. 球面ミラーの曲率半径測定はレーザー変調法を組み込んだ単一周波数の CW レーザーを使った Guoy 位相測定により、1µm 精度で測定可能であるので、 球面ミラー間のアライメントを分離して行える。これは C と同じことを述べて いるように取れるが、レーザー入射平面ミラーの反対の反射平面ミラーからの 透過光を使った測定系を付加できることから、容易に独立した調整ができる点 で、2 枚ミラー光共振器より優れた特徴になる。

F. 2Dから3Dへの構造変形を4ミラー光共振器に加えることで、円偏光固有 状態の蓄積が可能に成り、右円偏光や左円偏光のγ線生成が可能になる。

G. 内部のレーザー固有状態の観測ポートが二つ増えているので、色々な内部 状態測定が可能になる。

紙面の都合で具体的な特徴利用の説明は省略する。

17.5 γ線生成における光共振器の最適化

我々は蓄積レーザーパワーを上げる過程で数回誘電多層膜を一瞬で破壊した 経験がある。その時、Burst Mode によって入射レーザーのパワーを 100 倍程度 増幅する実験を行っていた。これまでの経験で我々の使用している高反射率ミ ラーでは、ミラー上で 5GW/cm² がピークパワーとしての上限値のようである。 まだ、ミラー破壊に至っていないが、蓄積平均パワー約 10kW を超すあたりか らミラーの熱変形効果が見えて来ているようである。目標である蓄積平均パワ ー10MW を達成する為には、ミラーからの熱伝導を上げると同時に冷却システ ムを導入する必要がある。

以上のミラーコーティング破壊の問題は光共振器の最適化設計で考慮しなけ ればならない最重要課題であるが、これからの技術開発にも依存するので、こ こではレーザー入射カップリングに関する最適化について報告する。

最適カップリング条件は、入射ミラーの透過率が全てのミラーでの損失と入

射ミラー以外のミラーでの透過損失および散乱による損失の和に一致している ことである。この時、共振器内の固有状態と同じ状態の入射レーザー成分は完 全な共鳴条件下で反射しない。つまりカップリング最大状態になる。使用する ミラーの反射率、透過率および吸収率の精密な絶対値測定を行い、測定精度内 で最適カップリング条件を満足させるように組み合わせるべきである。ミラー 母材表面がスーパーポリシュされ、マイクロラフネスがサブオングストローム 以下であれば、散乱によるレーザー損失は 1ppm 以下であるので、光共振器を真 空中で使用する場合、散乱によるレーザー損失を無視できる。この場合のカッ プリング測定に関する議論を"Bounce Number" b を使って行う[12,16]。

b は光共振器内での round-trip power loss によって以下のように定義される。 レーザー入射ミラーを1として、光共振器の全 round-trip power loss は数百 ppm 以下である場合に成り立つ近似で、

$$b = \frac{1}{T_1 + \sum_{n \neq 1} T_n + \sum L_n}$$

共振器フィネス F、共振器バンド幅 Δv_{cav} 、free spectral range FSR と b の近似式 が次のようになる。

$$F \cong 2\pi b \cong \frac{FSR}{\Delta v_{cav}}$$

共振器の増大率は、入射レーザーエネルギー U_{inc} で蓄積レーザーエネルギー U₀ を割ったものであり、以下のように近似できる。

$$gain = \frac{U_0}{U_{inc}} \cong 4T_1 b^2$$

レーザー入射電場フィールドの内、入射ミラーで反射される電場フィールドは、

$$\frac{\overline{E_{refl}}}{\overline{E_{inc}}} \cong 1 - 2T_1 b$$

の近似式で求められる。

ミラー2の透過パワーは測定できるので、それを Ptran とすると、

$$P_{tran} = P_{circ}T_2 = 4T_1b^2c_0P_{inc}T_2$$

ここで c_0 はミラー1 のカップリング係数、 P_{circ} は蓄積レーザーパワー、 P_{inc} は共振器への入射パワーである。測定できるミラー1 の反射パワー P_{refl} は、

$$\mathbf{P}_{refl} = (P_{inc} - P_0) + P_0 \left(\frac{\overrightarrow{E_{refl}}}{\overrightarrow{E_{inc}}}\right)^2 = (1 - c_0)P_{inc} + c_0 P_{inc} (1 - 2T_1 b)^2$$

以上の式から b,co を求めると、(簡単の為、ミラーは1,2のみとした。)

$$b = \frac{P_{tran}}{P_{inc}T_{2} + P_{tran}T_{1} - P_{refl}T_{2}}$$

$$c_{0} = \frac{\left(P_{inc}T_{2} + P_{tran}T_{1} - P_{refl}T_{2}\right)^{2}}{4P_{tran}T_{1}T_{2}P_{inc}}$$

以上の式は測定値から共振器のフィネス、全ロス、カップリングを求めるのに 便利である。ミラーが 4 枚以上の場合に以上の式を拡張するのは容易である。 例えば、透過も含めた全ロス量が 200ppm の場合、入射ミラーの最適カップリン グ条件の透過率は 100ppm になり、この場合、10,000 倍の増大率が期待できる。

17.6. 補足

光共振器の共鳴状態をサブオングストロームの精度で実現するピエゾアクチ ュエータ技術やフィードバック技術に関する開発も進んでいる。 Pound-Drever-Hall (PDH) stabilization 法が mode-locked laser と光共振器を共鳴 状態に保つ一般的なフェードバック技術である。我々はチルトロッキング法や 円偏光特性を利用した新しいフェードバック技術も数年前に開発した。レーザ 一発振器、光共振器そして加速器のビーム同期を考慮した複雑なフィードバッ ク系が構築され、発熱効果も取り入れた制御システムが今完成する状況に来て いる。十数年以上に及ぶ技術蓄積によって、99.99%のミラーで構成された光共 振器が扱えるようになった。2012 年春に 99.999%のミラーを取り扱うことを決 め、2012 年末からミラー製作を開始する。各ミラーのロスは 5ppm 以下を目指 した野心的な計画である。

ここでは実用的な技術の詳細を述べなかったが、参考文献を勉強して、光共振器を使った共鳴実験を二から三年程度行えば、99.99%ミラーを使った光共振器の実用化技術レベルに到達できる。逆コンプトン散乱によるレーザー光子の消費は極僅かであり、レーザーパルス蓄積共振器によりレーザーエネルギーを 捨てないで X 線や y 線に変換する技術は、これからのエコ社会に必須のものである。また、高品質電子ビームの特性を維持して、電子加速の為に使ったエネ ルギーを回収する ERL 技術も小型高輝度 X 線源や y 線源に最適で必須のものである[17]。

参考文献

[1] Nobuhiro Terunuma et al., 加速器, Vol.7, No.3, 172-183 (2010).

[2] Tomoya Akagi et al., in preparation.

[3] Y. Honda et al., "Stabilization of a non-planar optical cavity using its polarization

property", Optics Communications, 282, 3108-3112, 2009.

- [4] Kazuyuki Sakaue et al., "Observation of pulsed x-ray trains produced by laser-electron Compton Scatterings", REVIEW OF SCIENTIFIC INSTRUMENTS, 80, No.12, 123304-1, -7, 2009.
- [5] Masafumi Fukuda et al., 加速器, Vol.9, No.3, in press (2012).
- [6] K. Sakaue et al., in preparation.
- [7] Yosuke Honda, "一般ガウシアンビームで行った 3 次元 4 枚鏡共振器のモード 計算"、private communication (2008).
- [8] Yoshitaka Shimizu et al., in preparation (2012).
- [9] Ken Watanabe et al., 加速器, Vol.9, No.2, 82-91 (2012).
- [10] Arpit Rawankar et al., in preparation (2012).
- [11] A. E. Siegman, Lasers, University Science Books, Mill Valley, Calif., 1986.
- [12] Roderick J. Loewen, PhD thesis, SLAC-Report-632, June 2003
- [13] T. I. Smith et al., Pulse stacking in the SCA/FEL external cavity, Nuclear Instruments & Methods in Physics Research, Section A (Accelerators, Spectrometers, Detectors and Associated Equipment), 393 (1-3):245 – 51, July, 1997.
- [14] Yosuke Honda, report on Astigmatism and resonance condition of a 4-mirror cavity, private communication (2007).
- [15] Yosuke Honda, report on Mirror alignment tolerance for 2-mirror and 4-mirror cavities, private communication (2007).
- [16] D. A. Smith and D. I. Shernoff, "Simple measurement of gain and loss in ultralow loss optical resonators", Applied Optics, 24(12):1722 – 3, June 1985.
- [17] Junji Urakawa, "Compact X-ray source at STF (Super Conducting Accelerator Test Facility)", IOP Science, Journal of Physics: Conference Series 357, 012035, 2012.

18 エネルギー回収型リニアックによる次世代レーザーコンプトン散乱γ線源

要旨

本白書で議論されてきた次世代の高輝度 γ 線源の候補として、エネルギー回 収型リニアック (ERL)の基づくレーザーコンプトン散乱 γ 線装置について述べ る。ERL は、次世代放射光源として世界各国で研究開発されている電子加速器 であり、実用化は目前である。既に、日本では KEK (つくば市)において、 ERL-LCSγ 線源の実証試験施設が開発中であり、近い将来に完成する予定である。 これらの技術を元に、MeV~数+ MeV のエネルギー領域の LCSγ 線を生成する 装置が実用可能である。これらの技術の詳細について述べる。

18.1 γ線源の種類と特徴

γ線は中性子や電子線と同様に放射線として幅広く利用されている。これまで のγ線源は、Co-60のような放射性同位元素、もしくは、電子ビームの制動放 射が用いられてきた。放射性同位元素は、単色のγ線を発生するがエネルギー は同位体ごとに定まっており自由に変えることはできない。制動放射は、幅広 いエネルギーを持ったγ線であり単色性は持たない。また、線源におけるγ線発 生の角度分布は、放射性同位元素は等方的に、制動放射は前方に偏るが大きな 発散角度を持つ。そのため、これらの線源からビーム状のγ線を得るためには、 コリメータを組み合わせて立体角を制限する必要がある。

レーザーコンプトン散乱 (Laser Compton Scattering; LCS) では、極めて小さな 発散角を持ったビーム状の γ 線の発生が可能である。また、 γ 線の発散角とエネ ルギーに相関があるために、コリメータで立体角を制限することで単色 γ 線が 得られる。LCS- γ 線は、単色かつエネルギー可変の特徴を併せ持つ、唯一の γ 線源である[1]。

18.2 レーザーコンプトン散乱による高輝度γ線の発生

LCS- γ 線は図 18.1 に示すように、レーザーと高エネルギー電子の衝突散乱で 発生する。 γ 線エネルギー ($E\gamma$) は、レーザー光子エネルギー (E_L)、電子エネル ギー (E_e)、衝突散乱の幾何学的条件で決まり、

$$E_{\gamma} = \frac{E_L(1 - \beta \cos \theta_1)}{1 - \beta \cos \theta + (E_L/E_e)(1 - \cos \theta_2)} \qquad \cdots (1)$$

と表される。波長1µm(1.2 eV)のレーザーと350 MeV の電子をほぼ正面衝突

の角度で衝突散乱させれば、Pu-239の非破壊測定に利用可能な2MeV 領域のγ 線が前方軸上で得られる。γ線エネルギーの細かな調整は、電子エネルギーの調 整、または、電子とレーザーの衝突角度の調整で可能である。

incident photon

 γ 線のフラックスは、レーザーパルスに含まれる光子数 (N_{ph})、電子バンチに含まれる電子数 (N_e)、コンプトン散乱の断面積 (σ_c)、衝突点におけるレーザーと 電子の実効的なサイズ (A)の関数であり、次式で表される。

$$F_{total} = \frac{f N_e N_L \sigma_c}{A} \quad \cdots (2)$$

ここで、コンプトン散乱の断面積は電子の古典半径 *r_e* で決まる大きさであり、 (8π/3)*r_e²*の小さな値である。従って、ごく少数の電子とレーザー光子が衝突散乱 を起こすのみで、大半の電子と光子は衝突散乱を起こさずに「素通り」してし まう。γ線のフラックスを大きくするためには、大電流の電子ビームと高出力の レーザーを小さな集光スポットで衝突散乱させ、かつ、衝突散乱に寄与しなか った電子とレーザー(光子)をうまく再利用する方策が必要となる。

18.3 エネルギー回収型リニアックに基づく LCS-γ線源

単色性と輝度に優れた次世代 γ 線源として、エネルギー回収型リニアック (Energy-Recovery Linac = ERL)とレーザー蓄積装置を組み合わせた装置が提案 されている(図 18.2) [2]。ERL は主に、放射光科学の分野で、SPring-8 等の第 三世代放射光や、X 線自由電子レーザー(X-FEL)の次の世代の放射光源としてコ ーネル大学(米)、ジェファーソン研究所(米)など、世界各国で研究開発され ているものである。日本でも高エネルギー加速器研究機構(KEK)で、最終的 に 3 GeV の ERL の開発を目指し 35 MeV の試験機を開発中である。エネルギー 回収型リニアックでは、一度加速された電子は、再び加速空洞に減速位相で入 射される。その際に電子のエネルギーが回収され、再利用されるのである(図 18.2)。

図 18.1: レーザーコンプトン散乱による y 線ビームの発生

図 18.2 エネルギー回収の概念図

エネルギー回収型リニアックの構成は以下の通りである。(1)入射器で生成した電子を超伝導リニアック(RF空洞)で加速する。(2)加速した電子をレーザー蓄積装置に入射しLCS-γ線の発生を行う。(3)電子を超伝導 RF空洞に減速位相で再入射することで、電子エネルギーを高周波エネルギーとして回収する。(4)回収されたエネルギーを後続電子の加速に再利用する。以上の原理によって、投入する電力を節約しつつ、大電流の高エネルギー電子ビームを連続的に生成することが可能になる。

図 18.3 エネルギー回収型リニアックとレーザー蓄積装置を 組み合わせた LCS-y 線源の概念図

大電流加速器としては蓄積リングがあり、LCS-γ線の発生にも利用されてきた。蓄積リングでは同一の電子が何度も周回するために、LCS-γ線の発生によ

って電子ビームの品質が悪くなる(ビームが太くなり、エネルギー分散が大き くなる)。この結果、γ線のフラックスと単色度を高めるのが難しい。

電子ビーム		レーザー	
エネルギー	350 MeV	波長	1064 nm
バンチ電荷	100 pC	パルスエネルギー	1.8 µJ
rms バンチ長	3 ps	rms パルス長	2 ps
バンチ繰り返し	130 MHz	パルス繰り返し	130 MHz
規格化エミッタンス (x/y)	2.5/1 mm-mrad	光蓄積増大率	3000 倍
rms 衝突点サイズ (x/y)	38/24 μm	rms 衝突点サイズ	29 µm
rms エネルギー広がり	0.03%	衝突角度	3.5 度
y線フラックス	$1.0 \ge 10^{13} / s$		

表 18.1: ERL 型 γ 線源の設計パラメータ

ERL では、電子は周回毎に捨てられエネルギーのみが循環し、入射器で生成 した新しい電子が常に周回する。このためレーザーとの衝突散乱による電子ビ ーム品質の劣化が原理的に起こらず、優れた単色度と高いフラックスを持った γ 線の発生が可能である。

図 18.4 モンテカルロコードにより求めたγ線ビームのスペクトル (表1のパラメータと 0.1mrad のコリメータを用いた場合)

現在開発中の要素技術を組み合わせて実現可能な装置パラメータとして、表 18.1の値を用いると、γ線フラックス(全エネルギー積分値)は1.0 x 10¹³/s が 得られ、0.1 mrad のコリメータを通した後に得られる単色 γ 線は図 18.3 のよう に計算される。エネルギー幅 dE/E は約 10⁻³であり、既存の LCS γ 線施設より 1 ~2 桁幅が狭い。なお、計算はモンテカルロコード CAIN [3]を用いた。

18.4 極短パルスの LCS-y 線の生成

高輝度 γ 線を生成するには、レーザー蓄積装置を用いることが必要である。 その一方で、極短パルスのニーズがあり、電子バンチとレーザーを角度をつけ て散乱させることで、ほぼレーザーパルス幅程度の LCS-γ 線を生成できる(図 18.5) [10]。

図 18.5 極短 LCS-y 線生成の概念図[10]

図 18.6 極短パルス LCS-γ線の時間幅の計算結果の一例[10]

容易に入手できるレーザーとして、レーザーパルス幅 50 fs、繰り返し 1 kHz

のレーザーを想定する。電子バンチの時間幅は 1 ps、散乱スポットのサイズは $\sigma=20\mu m$ で計算した結果が、図 18.6 である。レーザーパルスに対して、約2 倍の 時間幅になることが分かった。このモードではレーザー蓄積装置を使わないた め、よりパルス幅の短い高出力レーザーを用いることで、生成する LCS- γ 線の パルス幅を短くすることができる。現実的に数十 fs の時間幅の LCS- γ 線が生成 できると期待できる。

18.5 極単色 LCS-γ線の生成

この手法で生成した LCS-γ線は高い輝度を持ち、コリメーターで切り出した ビームにおいても dE/E~10⁻³が可能であり、Duke 大学の HIGS 施設より 1 桁良 い。残念ながら、この手法で LCS-γ線の線幅を、さらに 1 桁以上向上させるこ とは困難と考えられる。そこで、光学素子を用いて線幅の狭いγ線を切り出す ことが考える。

歴史的には、Ge 検出器が普及する 1970 年代より以前には、ガンマ線を eV の 幅で分光できる装置として結晶格子による回折を利用した結晶分光器が研究さ れていたが、Ge 検出器の普及とともにほとんど忘れさられた存在になった。長 らく、中性子捕獲 γ線と組み合わせた核物理学研究に使われているだけであっ た。しかし、最近の高輝度の LCS ガンマ線と組み合わせることで高分解能のガ ンマ線分光が可能になることが Habs 等によって指摘され[6]、再び脚光を浴びて いる。

光学素子は基本的にもともとの光から、特定の幅の光を切り出すだけであり、 もともとの光の輝度が高い必要がある。そのため、LCS-γ線は従来の制動放射γ 線などよりも、圧倒的に輝度が高いため光学素子と組み合わせることで、dE/E ~10⁻⁶のエネルギー幅のγ線を生成できると期待できる。

18.6 単色中性子ビームの生成

極単色 γ 線の 2 次ビームラインとして、極単色中性子ビームラインが設置可 能である。極単色 γ 線をターゲットに照射し、適当な核反応で極単色の中性性 を生成する。中性子生成ターゲット内での散乱等を別にして、keV から MeV の エネルギーの中性子に対して、原理的に γ 線の線幅(数 eV から数+ eV) に等 しいエネルギー幅の中性子が生成可能である[7]。

18.7 既存の LCS-y 線源との比較

これまで、LCS-γ線源として、蓄積リングやリニアックが稼働、または、提案されてきた。加速器方式の違いが γ線源の性能にどのように関係するかを述べる。式(2)に示したように、LCS-γ線のフラックスは、衝突点における電子と光子の密度、衝突周波数に比例する。典型的なリニアックの加速電流=100 nA

(1 nC x 100 Hz)に対して、蓄積リングは 100 mA 級の加速電流が得られるので、 高フラックスの LCS – γ 線発生に有利である。Duke 大学では蓄積リングで駆動 する FEL (自由電子レーザー)の光子ビームと、蓄積リング自身の電子ビーム を衝突散乱させるタイプの LCS – γ 線源 (HIGS)が開発された[4]。この装置は 軍事機関の予算によって作製されたため、かなりの部分の研究成果が非公開で あるが、一部で一般の研究課題にも使われている。設計上は、HIGS では 2-225 MeV の γ 線をフラックスは 10⁸ 光子/毎秒で発生可能である。このフラッ クスは、これまで開発された LCS – γ 線源で最高の値である。

アンジュレータや偏向磁石からのシンクロトロン X 線放射光の輝度は、 [ph/mm²/mrad²/s/0.1%BW] の単位で表されるので、これにならって LCS- γ 線の 輝度を計算すると、

$$B \approx F_{total} \frac{\gamma^2}{\varepsilon_n^2} \times 0.1\%$$
 (ph/mm²/mrad²/sec/0.1%BW)

で与えられる。γは電子の相対論因子、 *ε*_nは電子ビームの規格化エミッタンスで ある。γ線の輝度は規格化エミッタンスの二乗に反比例するので、高輝度 LCS -γ線の発生には、電子ビームの低エミッタンス化が鍵となる。

LCS-散乱では、光子を散乱した電子は、電子自身のエネルギーを一部失い、 散乱前後で電子の運動量が変化する。すなわち、LCS 散乱は、電子ビームのエ ネルギー広がりとエミッタンスの増大をもたらす。

蓄積リングでは、同一の電子ビームが多数周回するため、LCS による電子ビ ームのエネルギーと運動量変化が蓄積していく。現実には、加速空洞によるエ ネルギーと運動量の補填があるため、LCS によるエネルギー広がりとエミッタ ンス増大は一定の値(平衡状態)に収束する。詳しい計算[5]によると、平衡状 態のエネルギー広がりは

$$(\sigma_{\delta})_{\min} \equiv \left(\frac{\sigma_E}{E}\right)_{\min} = \sqrt{\frac{7}{5}} \frac{\lambda_c}{\lambda_L} \gamma$$

平衡状態の規格化エミッタンスは

$$(\varepsilon_{x,y}^n)_{\min} = \frac{3}{10} \frac{\lambda_c}{\lambda_L} \beta_{x,y}^*$$

と与えられる。ここで、 λ_c はコンプトン波長(2.426×10⁻¹²m)、 λ_L はレーザー波 長、 $\beta_{x,y}^*$ は衝突点のベータトロン関数である。例として、電子エネルギー400 MeV、 $\beta_{x,y}^*=1$ cm、 $\lambda_L=1$ µm のパラメータを選ぶと、衝突密度を増やした(フラックス を大きくした)時の平衡値は、電子ビームのエネルギー広がり 5%、エミッタン ス 7 nm となる。大きなエネルギー広がりは LCS- γ 線の単色度を劣化させるこ とになる。つまり、蓄積リングでは、LCS- γ 線の単色度を保ったままフラック スを大きくすることに限界がある。

エネルギー回収型リニアック(ERL)は、大電流かつ低エミッタンスの電子ビームを加速し、電子ビームは周回ごとに使い捨てられ、新しい電子ビームが常に入射される。このため、ERLに基づくLCS-γ線源では、高フラックス(大電流)、高輝度(低エミッタンス)、優れた単色度(新しい電子)の特色を持つ。

図 18.4 にこれまでに開発された LCS 光源の輝度と単色度を示す。

図 18.7 これまでに開発された LCS 光源と、提案中の光源[7]

18.8 LCS-γ線源の要素技術開発の現状

レーザーコンプトン散乱 γ 線の輝度、フラックスの増大には、低エミッタン スかつ大電流の電子ビームと高出力のレーザービームを微小スポットで衝突さ せる必要がある。レーザーコンプトン散乱では散乱角度と光子エネルギーに相 関があるために、微小なアパーチャーを持つコリメータを用いて光子ビームを 単色化できるが、単色度の限界は、(1) 電子ビームの単色度、(2) レーザービー ムの単色度、(3) 電子ビームのエミッタンス、(4) スポットサイズの条件で決ま る。通常のパラメータでは、電子ビームエミッタンスの寄与が最も大きいので、 低エミッタンス電子ビームの発生が LCS-y線の単色性向上の鍵である。

原子力機構を中心とするグループは、KEK、名古屋大学、広島大学と共同し て、規格化エミッタンス 0.1-1 mm-mrad、電流 10-100 mA の電子ビームを発 生する光陰極 DC 電子銃の開発を進めている。この電子銃は LCS-γ線のみなら ず、次世代 X線放射光源、共振器型 XFEL の入射器としても利用可能な最先端 技術である。2010 年度には、500 kV の DC 電圧を無放電で 8 時間安定に印加に することに世界で初めて成功し[8]、さらに、2012 年度には 10 mA の電子ビーム 引出しにも成功した。図 18.5 に開発中の 500-kV 電子銃を示す。500kV DC 電圧 を印加する分割型セラミック管とカソード、アノード電極を含んだ主真空容器 の他に、光陰極である GaAs 半導体の真空導入と表面活性化のためのローディン グ容器、調製容器が接続されている。カソード電極の前面に設置される GaAs 半導体にレーザーを照射し、電子ビームを引き出す構造である。

図 18.8 開発中の 500 kV 光陰極電子銃の構成

超伝導 RF 空洞は、国際リニアコライダー(ILC)でその技術が採用されたように、先端加速器の基盤技術として注目されている。KEK、JAEA、東大物性研の共同チームは、ILC 用に開発された TESLA 空洞をベースとし、これに改良を加えることで、大電流電子ビームの加速が可能な ERL 空洞の開発を行った。図 18.6 は開発した ERL 空洞である。大電流加速の障害となる空洞の高次モード (HOM)を効率的に減衰させるため、空洞形状、ビームパイプ径の最適化を行い、 さらに、空洞端部に HOM ダンパーと偏心フルートを備えている。これらの構造 と機構によって、HOM による不安定性の閾値電流が 600 mA 以上となる大電流 用の空洞が実現しつつある。LCS-γ線の発生に必要な 10-100 mA の加速に十分 な性能である[9]。

図 18.9 大電流加速用に設計した ERL 空洞

レーザー蓄積装置は、高い反射率を持つミラーを対向した共振器に外部から レーザーパルスを入射し蓄積する装置である。詳細は別章に述べる。

開発した電子銃、超伝導空洞を含む ERL 基盤技術の総合的な実証試験を行う ための試験加速器として「コンパクト ERL」が建設中である(図 18.7)[10,11]。 コンパクト ERL は、KEK つくばキャンパスの 12 GeV-陽子シンクロトロンの実 験ホールであった東カウンターホールを改修した ERL 研究開発棟に設置される。 2012 年 10 月現在、コンクリートシールドの建設が完了し、He 冷凍機、高周波 源、入射器超伝導空洞、主加速器超伝導空洞も終わっており、電子銃の設置が 進んでいる。2013 年 3 月に、電子銃から最初のビーム引き出しを予定しており、 その後、入射器の調整、主加速器と周回軌道の調整を経て、本格的なビーム運 転に入る。KEK の将来計画である 3-GeV ERL 放射光の実現に必要なデータ取得 に加えて、2013 年度には LCS-γ線発生実験も計画している。コンパクト ERL の当初運転は、電子ビームエネルギー35 MeV であり、22 keV の LCS 光子を発 生する。将来計画として、超伝導加速空洞の増強、エネルギー回収軌道の二重 化を行い、電子ビームエネルギー245 MeV へのアップグレードの余地を残した 設計となっている[12]。アップグレード後は、LCS 光子エネルギーは最大 1.1 MeV となる。

図 18.20 2013 年に稼働予定の KEK に建設中のコンパクト ERL (35MeV 運転時) 18.9 実用機の展望

既に KEK に ERL-LCSγ線の試験機が建設中であり 2013 年度にはビーム生成 試験が行われる予定である。この試験機によってこれまで開発されてきた諸技 術は統合した形で実証されるはずである。LCS-γ線のエネルギーは電子エネルギ ーの2乗に比例し、レーザーの波長に反比例する。LCS-γ線のエネルギーを上げ るには電子エネルギーを上げることが一番容易であり、そのためには複数の加 速空洞を並べればよい。一つの加速空洞が技術的に完成した後では、コストの 問題に過ぎず、容易にエネルギーを上げることができる。

350 MeV の電子ビームと、1 μ m の標準的な波長のレーザーに対して約 2 MeV の LCS- γ 線が生成される。本提案書で議論されている 2~20 MeV の γ 線を生成 するには、350~1 GeV の ERL を用いればよい。KEK では次世代光源として 3GeV の ERL を計画しており既に基本設計はなされているため、2013 年の試験終了後 には任意のエネルギーの ERL 建設に着手できる。

γ線のエネルギーは電子のエネルギーを変更することで調整できる。ただし、 全てのビームラインのエネルギーが影響を受ける。そのため、短時間でエネル ギーを変更していく必要がある利用に対しては、技術開発が必要であるが、レ ーザー蓄積装置と電子ビームの散乱角度を変更することで調整することが考え られる。

一つのERLに対して複数のレーザー蓄積装置を導入することで、複数のLCS-γ 線ビームラインを同時に稼働させることができる。ただし、レーザー蓄積装置 によって電子ビームのエミッタンスが悪化するため、実際に導入できる数については今後の検討課題である。散乱角度を調整する機構を導入すれば、ビームライン毎にエネルギーを自由に変更することができる。複数のLCSγ線発生装置のうち一部を、極短パルスγ線生成ビームライン(数十fs)、極線幅γ線ビームライン(dE/E~10⁻⁶)、高速円偏光切り替えγ線ビームライン等にすることで、多様なアプリケーションに用いることができる。ガンマ線CTビームライン、放射性同位体非破壊分析専用ビームラインなどの産業利用のためのビームラインと、上記の基礎研究用のビームラインを同時に利用可能である。

参考文献

[1] G.A. Krafft and G. Priebe, Review of Accelerator Science and Technoogy 3 (2010) 147.

- [2] R. Hajima et al., Nucl. Instr. Meth. A608, S57-S61 (2009).
- [3] P. Chen et al., Nucl. Instr. Meth. A355, 107 (1995).
- [4] H.R. Weller and M.W. Ahmed, Mod. Phys. Lett. A18, 1569 (2003).
- [5] Z. Huang and R.D. Ruth, Phys. Rev. Lett. 80, 976 (1998).
- [6] D. Habs, et al. Phys Rev Lett, 108,184802 (2012)
- [7] The White Book of ELI Nuclear Physics Bucharest-Magurele, Romania (2011)
- [8] R. Nagai et al., Rev. Sci. Instr. 81, 033304 (2010).
- [9] K. Umemori et al., Proc. SRF-2009, 355 (2009).
- [10] 羽島良一他、「コンパクト ERL の設計研究」KEK Report 2007-7 / JAEA-Research 2008-032 (2008).
- [11] S. Sakanaka et al., Proc. IPAC-2012, 607 (2012).
- [12] M. Shimada, et al., Proc. IPAC-2011, 1909 (2011).

本白書の作製に参加された方(五十音順)

秋宗秀俊(甲南大学)、宇都宮弘章(甲南大学)、浦川順治(高エネルギー加速 器研究機構)、大垣英明(京都大学)、大熊春夫(高輝度光科学研究センター)、 大塚孝治(東京大学)、梶野敏貴(国立天文台)、加藤政博(分子科学研究所)、 紀井俊輝(京都大学)、James Koga(日本原子力研究開発機構)、坂井信彦(兵庫 県立大学)、静間俊行(日本原子力研究開発機構)、嶋 達志(大阪大学)、豊川 弘之(産業技術総合研究所)、西尾勝久(日本原子力研究開発機構)、早川岳人 (日本原子力研究開発機構)、羽島良一(日本原子力研究開発機構)、藤原 守(岐 阜大学)、宮本修治(兵庫県立大)

執筆担当者

本白書の作成にあたり	大垣英明
背景と概要	大垣英明
1章	大垣英明、紀井俊輝
2章	大垣英明、豊川弘之
3章	豊川弘之
4章	豊川弘之
5章	坂井信彦、早川岳人、宮本修治
6章	紀井俊輝
7章	嶋 達志
8章	梶野敏貴、早川岳人
9章	秋宗秀俊
10 章	静間俊行
11 章	西尾勝久
12 章	藤原 守
13 章	藤原 守
14 章	James Koga、早川岳人
15 章	藤原 守
16 章	嶋 達志
17 章	浦川順治
18 章	羽島良一

Institute of Advanced Energy, Kyoto University

Gokasyo, Uji, Kyoto 611-0011 Japan Phone. +81-774-38-3400 Fax. +81-774-38-3411 E-mail: office@iae.kyoto-u.ac.jp http://www.iae.kyoto-u.ac.jp

京都大学エネルギー理工学研究所

〒611-0011 京都府宇治市五ヶ庄 TEL:0774-38-3400 FAX:0774-38-3411