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Azimuthal angle distributions of neutrons emitted from the 9Be(γ, n) reaction
with linearly polarized γ rays
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The electromagnetic transitions of 9Be with linearly polarized γ rays are calculated by using the α + α + n

three-body model and the complex-scaled solutions of the Lippmann-Schwinger equation; the azimuthal angle
distributions of the emitted neutrons are investigated. We calculate the anisotropy parameter as a function of
the photon incident energy Eγ and discuss how sensitive the anisotropy parameter is to nuclear structure and
transition modes. The result suggests that the azimuthal angle distribution of neutrons emitted from the 9Be(γ, n)
reaction with the linearly polarized γ rays is useful to identify the resonances in the final states even if it is not
clearly observed in the cross section.
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I. INTRODUCTION

The photonuclear reactions play an important role in de-
veloping nuclear physics [1]. In particular, the (γ, n) reactions
with linearly polarized γ -ray beams have the potential to al-
low us to study the nuclear structures in detail. In 1957, Agodi
[2] predicted that azimuthal angle distributions of nucleons
emitted from the ( �γ , n) and ( �γ , p) reactions have anisotropic
shapes and are proportional to the function of 1 + b cos (2φ)
at the polar angle θ = 90◦, where φ is the azimuthal angle.
The coefficient b contains the information on the transition
modes and nuclear structure of excited states, such as the
single-particle structure of emitted nucleons.

Recent development in the experimental technique of laser
Compton scattering (LCS) enables us to investigate the ( �γ , n)
and ( �γ , p) reactions. An advantage of LCS is that one can
generate almost 100% linearly polarized γ -ray beams because
the polarization of the laser is directly transferred to the pho-
tons. The linearly polarized γ ray generated by LCS is now
available at High Intensity γ -ray Source [3,4], NewSUBARU
[5–7], and so on, and, in fact, the azimuthal angle distributions
of neutrons emitted from the ( �γ , n) reactions were measured
by several groups [4,5,7].

Theoretically, there is no detailed discussion on the ( �γ , n)
and ( �γ , p) reactions in relation with nuclear structure. In
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Ref. [2], the azimuthal angle distribution was discussed for
the electric and magnetic transitions, but the nuclear structure
dependence, which can be described as the single-particle
structure of emitted nucleons, was not taken into account in
the anisotropic shapes in the distributions. To compare with
experimental data, one should investigate the azimuthal angle
distribution of emitted nucleons in relation with the nuclear
structure and transition modes.

The 9Be( �γ , n) reaction is one of the best examples for such
studies because the reaction reveals different aspects of struc-
ture of 9Be in continuum, depending on the excitation energy.
In a low-energy region, the cross section of the 9Be(γ, n)
reaction has peaks coming from the resonances connected
with the ground state by the E1 and M1 transitions [8–11].
Thus, the azimuthal angle distributions in the low-energy
region tell us the information for each resonance. In a higher-
energy region below the giant dipole resonance, the reaction
is dominated by the transitions into nonresonant continuum
states [11], which are expected to have no peculiar structure
in the final states. From the azimuthal angle distributions in
the higher-energy region, we can discuss the sensitivity of the
anisotropy to the transition modes.

The purpose of this paper is to investigate the azimuthal
angle distribution of the neutrons emitted from the 9Be( �γ , n)
reaction and to present the anisotropy in the distribution in
relation with the nuclear structure and transition modes. To
calculate the 9Be( �γ , n) reaction, we use the α + α + n three-
body model [10,11], which reproduces the cross section of
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the 9Be(γ, n) reaction quantitatively. For final states, it is
required to describe the three-body scattering states of the
α + α + n system. We here describe the final scattering states
by combining the three-body model with the complex-scaled
solutions of the Lippmann-Schwinger equation (CSLS) [12].
To discuss the nuclear structure and transition modes from the
azimuthal angle distributions, we calculate the coefficient b as
a function of the photon incident energy. We show the coef-
ficients b at energies corresponding to the resonances, which
are excited by the E1 and M1 transitions and discuss whether
or not the azimuthal angle distributions reflect the nuclear
structure. We also show the anisotropy for the transitions into
the nonresonant continuum states and discuss how sensitive
the anisotropy is to the transition modes.

II. THEORETICAL FRAMEWORK

A. α + α + n three-body model

To describe the 9Be system, we employ the α + α + n
three-body orthogonality condition model (OCM) [11]. In the
OCM, the Hamiltonian for relative motions of the α + α + n
system is given by

H =
3∑

i=1

ti − Tc.m. +
2∑

i=1

Vαn(ξ i ) + Vαα + VPF + Vααn, (1)

where ti and Tc.m. are kinetic energies for individual parti-
cles and the center of mass of the system, respectively. The
interaction between the neutron and the ith α particle is
given by Vαn(ξ i ), where ξ i is the relative coordinate between
them. Here, we employ the Kanada-Kaneko-Nagata-Nomoto
potential [13] for Vαn. For the α-α interaction Vαα , we use the
same potential as used in Ref. [14], which is a folding po-
tential of the effective NN interaction [15] and the Coulomb
interaction. The explicit form of Vαα is given by

Vαα = VN exp (−μααr2) + 4e2

r
erf (−κr ), (2)

whose parameters are given in Ref. [10]. The pseudopotential
VPF [16] is, in fact, the projection operator,

VPF = λ|�PF〉〈�PF|, (3)

which removes the Pauli forbidden states from the relative
motions of α-α and α-n subsystems. The Pauli forbidden
states are defined by the harmonic-oscillator wave functions
by assuming the (0s)4 configuration for the α particle. In the
present calculation, we take λ as 106 MeV. In the present
model, we introduce the phenomenological α + α + n three-
body potential Vααn [11]. The explicit form is given by

Vααn = V3 exp (−μ3ρ
2), (4)

where ρ is the hyperradius of the α + α + n system. The
strength and width parameters of the three-body potential, V3

and μ3, are determined for each spin-parity state. For 3/2−
states, we determine the parameters to reproduce the observed
binding energy and charge radius of the ground state because
these quantities are important to reproduce the Q value and
sum rule values of the electric dipole transition; we take V3 =
1.10 MeV and μ = 0.02 fm−2. For other spin-parity states,

we use the same value of μ as used for the 3/2− states,
whereas the V3’s are so as to reproduce the peak energies of
the photodisintegration cross section.

With the Hamiltonian in Eq. (1), we consider the following
Schrödinger equation:

HχJπ

ν = Eνχ
Jπ

ν , (5)

where Jπ is the total spin and the parity of the α + α + n
system. The energy eigenvalue and the eigenstate of the
relative motions of the system are expressed by Eν and χJπ

ν ,
respectively, in which ν is the state index. To solve the
Schrödinger equation, we employ the coupled-rearrangement-
channel Gaussian expansion method [17]. In the present cal-
culation, we describe the relative wave-function χJπ

ν as

χJπ

ν =
∑
ijc

Cν
ijc(Jπ )

[[
φi

l (rc ) ⊗ φ
j
λ (Rc )

]
L

⊗ χσ
]
JM

, (6)

where Cν
ijc(Jπ ) is the expansion coefficient and χσ is the

spin-wave function of the neutron. The relative coordinates rc

and Rc are those in three kinds of Jacobi coordinate systems
labeled by c (c = 1–3), and the indices for the basis functions
are represented by i and j . The spatial part of the wave
functions is expanded with Gaussian basis functions given by

φi
l (r) = Ni

l r
l exp

(− 1
2air

2
)
Yl (r̂), (7)

where Ni
l is a normalization factor and ai is the width of the

Gaussian.

B. Complex-scaled solutions of
the Lippmann-Schwinger equation

To investigate the 9Be(γ, n) reaction, it is necessary to de-
scribe the three-body scattering states of α + α + n. We adopt
the CSLS [12] in which the complex scaling method (CSM) is
combined with the Lippmann-Schwinger formalism. Before
going into the formalism of CSLS, we briefly explain CSM
[18–23]. In CSM, the relative coordinates ζ = (rc, Rc ) are
transformed as

U (θ )ζU−1(θ ) = ζeiθ , (8)

where U (θ ) is the complex scaling operator with a scaling an-
gle θ being a real number. Applying this transformation to the
Hamiltonian H , we obtain the complex-scaled Schrödinger
equation,

Hθχθ
ν = Eθ

ν χθ
ν , (9)

where Hθ is the complex-scaled Hamiltonian. By solving the
complex-scaled Schrödinger equation with a finite number of
L2 basis functions, such as Gaussian, we obtain the eigen-
states {χθ

ν } and the energy eigenvalues {Eθ
ν } of Hθ .

All the energy eigenvalues {Eθ
ν } are obtained on a complex

energy plane, governed by the ABC theorem [18,19], and
the distributions of their imaginary parts reflect the outgoing
boundary conditions as follows. In CSM, the resonances of a
many-body system are obtained as the isolated poles with the
L2 basis functions. The energy eigenvalues of the resonances
are given by E = Er − i�/2, where Er and � are the reso-
nance energy and the decay width, respectively. In contrast,
the energy eigenvalues of continuum states are obtained on
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the 2θ -rotated branch cuts starting from different thresholds
of two- and three-body decay channels, such as 8Be + n and
α + α + n in the case of 9Be. This classification of continuum
states in CSM imposes that the outgoing boundary condition
for each open channel is taken into account automatically
by the imaginary parts of energy eigenvalues. Using the
classification of continuum states in CSM, we can describe
three-body scattering states without any explicit enforcement
of boundary conditions.

The complex-scaled eigenstates satisfy the extended com-
pleteness relation [24], consisting of bound states, resonances,
and rotated continua, as

1 =
∫∑
ν

∣∣χθ
ν

〉〈
χ̃ θ

ν

∣∣, (10)

where {χθ
ν , χ̃ θ

ν } forms a set of biorthogonal states. This rela-
tion is used when we describe the scattering states in CSLS.

In CSLS, we start with the formal solution of the
Lippmann-Schwinger equation given by

� (±)(k, K) = �0(k, K) + lim
ε→0

1

E − H ± iε
V �0(k, K),

(11)

where k is the relative momentum between two α’s and K is
that between the neutron and the center of mass of the α-α
subsystem. The function �0 is a solution of the asymptotic
Hamiltonian H0 for the α + α + n three-body system. The
interaction V in the second term in Eq. (11) is defined by
subtracting H0 from H .

In the present calculation of the scattering states, for sim-
plicity, we replace the Coulomb part of the α-α interaction in
Eq. (2) with the shielded Coulomb potential with the Gaussian
damping factor given by

4e2

r
erf (−κr ) exp

(
− r2

R2
c

)
. (12)

The parameter Rc is taken as R2
c = 107 fm2. We have con-

firmed that the photodisintegration cross section calculated
with the shielded Coulomb potential is identical to the original
result in Ref. [11]. Then H0 is defined by the kinetic-energy
operator, and its solution is given by

〈r, R|�0(k, K)〉 = 1

(2π )3
eik·r+iK·R, (13)

where r and R are the relative coordinates being conjugate to
k and K, respectively.

To describe the electromagnetic transition into the α +
α + n three-body scattering states, we consider the incoming
scattering states in the bra representation. Assuming the Her-
miticities of H and V , the scattering states are written as

〈� (−)(k, K)|=〈�0(k, K)|+ lim
ε→0

〈�0(k, K)|V 1

E − H + iε
.

(14)

In CSLS, we express the Green’s function in Eq. (14) in terms
of the complex-scaled Green’s function. The complex-scaled
Green’s function with the outgoing boundary condition Gθ (E)

is related with the nonscaled Green’s function as

lim
ε→0

1

E − H + iε
= U−1(θ )Gθ (E)U (θ ). (15)

The explicit form of Gθ (E) is defined by

Gθ (E) = 1

E − Hθ
=

∫∑
ν

∣∣χθ
ν

〉〈
χ̃ θ

ν

∣∣
E − Eθ

ν

, (16)

where the completeness relation in Eq. (10) is used. From
Eqs. (14)–(16), we obtain the incoming scattering states in
CSLS as

〈� (−)(k, K)| = 〈�0(k, K)| +
∫∑
ν

〈�0(k, K)|V U−1(θ )
∣∣χθ

ν

〉

× 1

E − Eθ
ν

〈
χ̃ θ

ν

∣∣U (θ ). (17)

C. Electromagnetic transitions with linearly polarized γ rays

To calculate the photodisintegration cross section with
the γ ray linearly polarized to the x axis, we consider the
following matrix elements:

Mx (EM1) = 〈� (−)(k, K)|Ôx (EM1)|�g.s.〉, (18)

where �g.s. is the initial ground-state wave function and
Ôx (EM1) is the electromagnetic dipole transition operator.
The operators for the electric and magnetic transitions are
defined by

Ôx (E1) = − 1√
2

[Ô11(E ) − Ô1−1(E )], (19)

and

Ôx (M1) = i√
2

[Ô11(M) + Ô1−1(M)], (20)

respectively, where Ôλμ(EM) is the operator in the long-
wavelength approximation with the rank λ and its z-
component μ. It is noted that the polarization for the magnetic
transition is vertical to that for the electric one.

Using the matrix elements of Eq. (18), we obtain the elec-
tric dipole (E1) and magnetic dipole (M1) transition strengths
of 9Be as

d6B(EM1)x
dk dK

=
∑
Mi

1

2Ji + 1
|Mx (EM1)|2, (21)

where Ji and Mi are the total spin and its z component of the
initial ground state, respectively. We obtain also the double-
differential cross section for the E1 and M1 transitions of
9Be as

d2σx

dEγ d�n

= 16π3

9

Eγ

h̄c

∫
dk

∫
dK

d6B(EM1)x
dk dK

× δ

(
Eγ − Eg.s. − h̄2k2

2μ
− h̄2K2

2M

)
, (22)

where Eγ and Eg.s. are the incident photon energy and
the binding energy of the 9Be ground state, respectively. The
solid angle for the emitted neutrons is given by �n. In the
calculation of Eq. (22), we integrate k over the entire range to
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TABLE I. Excitation energies Ex and decay widths � for the
resonances excited by the E1 and M1 transitions (units in MeV).
The observed data except for the 1/2+ state are taken from Ref. [25].
The data for the 1/2+ state are taken from Ref. [3].

J π Present (Ex, �) Expt. (Ex, �)

1/2+ (1.732 ± 0.002, 0.213 ± 0.006)

5/2− (2.43, ≈3 × 10−4) (2.4294, 7.8 × 10−4)

1/2− (2.68, 0.495) (2.78, 1.01)

5/2+ (3.04, 0.323) (3.049, 0.282)

3/2+ (4.69, 1.44) (4.704, 0.743)

3/2−
2 (4.65, 1.18) (5.59, 1.33)

take into account the excitation of the 8Be subsystem, which
is neglected in the experiment [4] because it was shown in
Ref. [11] that the transition into the 8Be(2+) + n configu-
ration dominates the photodisintegration above Eγ = 8 MeV
and is closely related to the nuclear structure of 9Be.

We here take the scattering angle θn of emitted neutrons as
π/2. When θn = π/2, the cross section has a simple function
form as a function of the azimuthal angle φn of the emitted
neutrons [2], that is,

d2σx

dEγ d�n

∣∣∣∣
θ=π/2

= a(Eγ ){1 + b(Eγ ) cos 2φn}. (23)

It is noted that the coefficients a and b depend on Eγ . In
what follows we refer to the coefficient b as the anisotropy
parameter and discuss its dependence on the nuclear structure
and transition modes in the next section.

III. RESULTS

First we show in Fig. 1 the calculated cross section of the
9Be(γ, n) reaction in comparison with the experimental data
[3,6]. We show also the contributions of the E1 and M1 tran-
sitions. From this comparison, it is seen that our calculation
well reproduces the experimental data below Eγ = 16 MeV.
The calculated cross section below Eγ = 6 MeV shows peaks
coming from the resonances excited by the E1 and M1
transitions. For reference, we list the excitation energies Ex

and the decay widths � of the resonances obtained in the CSM
in Table I. The peaks at Eγ = 2.4 and 3.0 MeV in Fig. 1
correspond the 5/2− and 5/2+ resonances obtained at 2.43
and 3.04 MeV, respectively. We find that the 1/2− resonance
at 2.68 MeV and the 3/2−

2 resonance at 4.65 MeV have the
peaks in the contribution of the M1 transition but have minor
contributions to the cross section. The 3/2+ resonance at
4.69 MeV is not clearly identified both in the cross section
and in the contribution of the E1 transition because of its
wide decay width of � = 1.44 MeV. It is noted that the
resonance pole of the first excited 1/2+ state is not obtained
in the CSM, whereas our calculation reproduces the peak ob-
served at Eγ = 1.7 MeV corresponding to the 1/2+ state (see
Ref. [10] for details). Above Eγ = 6 MeV, the cross section
is dominated by the E1 transition, and the contributions of
the M1 transition to the cross section are relatively small. We
confirm also that there is no resonance excited by the E1 or

 0.01
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FIG. 1. Calculated cross sections of the 9Be(γ, n) reaction.
Panel (a) represents the cross sections of up to Eγ = 16 MeV, and
panel (b) is the enlarged figure of panel (a) in the range of 1.5 �
Eγ � 5.5 MeV. The contributions of the E1 and M1 transitions
are shown as the red (dashed) and blue (dotted) lines, respectively.
The sum of the contributions is shown as the black (solid) line. The
open squares and open circles represent experimental data taken from
Refs. [3] and [6], respectively.

M1 transition above Eγ = 6 MeV; hence, the E1 transition
into nonresonant continuum states dominates the cross section
above Eγ = 6 MeV.

We calculate the azimuthal angle distribution of the neu-
trons emitted from the 9Be( �γ , n) reaction and show the results
in Fig. 2. In Fig. 2, the anisotropy parameter for the E1 or M1
transition is plotted as a function of the photon incident energy
Eγ . In the low-energy region below Eγ = 6 MeV, it is found
that the anisotropy parameter fluctuates between positive and
negative values as Eγ varies. The parameter for E1 has the
maximal value at Eγ = 3.2 MeV corresponding to the 5/2+
resonance and that for M1 has the maximal value at Eγ =
2.42 MeV corresponding to the 5/2− resonance. Furthermore,
it is seen that the anisotropy parameter for the M1 transition
has the maximal value at the energy region of Eγ ≈ 5 MeV.
In this energy region, the M1 transition is dominated by the
transition into the 3/2−

2 resonance at 4.65 MeV with � =
1.18 MeV, and the contribution of nonresonant continuum
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FIG. 2. Anisotropy parameters in the 9Be( �γ , n) reaction. Those
for the E1 and M1 transitions are represented as the red (solid)
and blue (dotted) lines, respectively. The vertical line indicates the
breakup threshold of 9Be. The inset shows the enlarged figure for the
energy region corresponding to the 5/2− resonance.

states is negligible. Thus, the maximal value in the anisotropy
parameter for the M1 transition at Eγ ≈ 5 MeV is understood
to come from the 3/2−

2 resonance. These results indicate
that the anisotropy in the azimuthal angle distribution of the
emitted neutrons is sensitive to the nuclear structure and is
enhanced at the energies corresponding to the resonances in
the final states. It would be interesting that the anisotropy
parameter for the E1 transition has a minimal value at Eγ ≈
4 MeV, which coincides with the energy of the 3/2+ res-
onance at Ex = 4.69 MeV within the decay width of � =
1.44 MeV. The 3/2+ resonance is not clearly identified even
in the contribution of the E1 transition in Fig. 1. This fact
indicates the possibility that the azimuthal angle distribution
of the neutrons emitted from the 9Be( �γ , n) reaction is useful
to identify the resonances not observed in the cross section
of the (γ, n) reaction. It is noted that the 1/2± resonances
cannot be clearly seen in the anisotropy parameter because
the limitation on the z component of the total spin sup-
presses the anisotropy in the azimuthal angle distribution. In
fact, the absolute values of the anisotropy parameters for the
first excited 1/2+ state (Eγ = 1.7 MeV) in the E1 transition
and the 1/2− resonance (Eγ = 2.68 MeV) in the M1 transi-
tion are relatively small.

The transitions in the energy region higher than Eγ =
6 MeV are dominated by transitions into nonresonant con-
tinuum states, which have no peculiar structure. Thus, it is
expected that the anisotropy parameter is sensitive to the
transition modes not to the nuclear structure. As shown in
Fig. 2, the anisotropy parameter for the E1 or M1 transition
gently changes. The anisotropy for the M1 transition is lower
than that for the E1 transition, but the anisotropy for the M1
transition still has a positive value. This result suggests that
the sign of the anisotropy parameter does not depend on the
transition modes in the nonresonant continuum region.

We also investigate the effect of the excitation of the 8Be
subsystem on the azimuthal angle distributions. To investigate
the effect, we calculate the anisotropy parameter by switching
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FIG. 3. Anisotropy parameters for the E1 transitions with and
without the effect of the 8Be excitation in comparison with the
experimental data. The red (solid) line represents the result which
includes the excitation of the 8Be subsystem and the blue (dotted)
line is the result obtained by switching off the 8Be excitation. The
experimental data are represented as open circles and are taken from
Ref. [4].

off the 8Be excitation. The result is shown in Fig. 3 in
comparison with the experimental data [4] and the calculation
with the 8Be excitation. We note that the experimental setup
is taken into account in the calculations in Fig. 3, namely, the
upper limit of the integration over k in Eq. (22) is changed
so as to reproduce the setup in Ref. [4]. From the comparison
in Fig. 3, we see that the anisotropy parameter is drastically
changed by switching off the excitation of the 8Be subsys-
tem. The anisotropy parameter obtained by switching off the
8Be excitation shows negative values in the whole energy
region and is inconsistent with the experimental data. By
taking into account the 8Be excitation, the anisotropy param-
eter is changed to have positive values above Eγ = 6 MeV
and approaches the experimental data at the higher-energy
region.

In Fig. 3, our calculation underestimates the experimental
data in the lower-energy region, even if we taken into account
the 8Be excitation and the experimental setup. It seems that
our calculation cannot describe the contribution of the tail
of the 3/2+ resonance at Eγ = 4.69 MeV quantitatively. In
our calculation, a broader decay width of the 3/2+ resonance
is obtained than the observed one, and the 3/2− resonance
has a large negative contribution to the anisotropy parameter
as shown in Fig. 2; thus our calculation underestimates the
anisotropy parameter at the lower-energy region. Our cal-
culation also predicts that the anisotropy parameter rapidly
decreases and goes to negative values as Eγ goes below
5 MeV because of the existence of the 3/2+ resonance at
4.69 MeV. To confirm this, it is desired to perform a new
experiment measuring an anisotropy parameter below Eγ =
5 MeV, which is not reported in Ref. [4].

In the present paper, we do not take into account the
effect of interferences between the E1 and the M1 transitions
on the anisotropy in the azimuthal angle distributions. This
effect is another point to be considered to overcome the
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underestimation of the anisotropy parameter in Fig. 3 because
the M1 transition has a positive contribution at the lower-
energy region. To discuss the azimuthal angle distributions
more quantitatively, the analysis with the interference effect
will also be needed.

IV. SUMMARY

The electromagnetic transitions of 9Be with linearly po-
larized γ rays were investigated by using the α + α + n
three-body model and the complex-scaled solutions of the
Lippmann-Schwinger equation. The anisotropy in the az-
imuthal angle distribution of the neutrons emitted from the
9Be( �γ , n) reaction was calculated as a function of the photon
incident energy Eγ .

We found that the anisotropy parameter for the E1 or
M1 transition has maximal and minimal values in the low-
energy region below Eγ = 6 MeV, and their energies coin-
cide with the resonance energies in the final states. Although
the 3/2−

2 and 3/2+ resonances have minor contributions to the

photodisintegration cross section, these resonances have the
maximal and minimal values, respectively, in the anisotropy
parameter. The azimuthal angle distributions of the neutrons
emitted from the ( �γ , n) reaction may be useful to identify
the resonances not observed in the cross section of the
(γ, n) reaction. In contrast, in the energy region higher than
Eγ = 6 MeV, we found that the anisotropy parameter gently
changes and the signs for the E1 and M1 transitions are
identical. This result suggested that the anisotropy does not
depend on the transition modes.

It is also found that the excitation of the 8Be subsystem is
important to the azimuthal angle distribution. The anisotropy
parameter is drastically changed by switching off the exci-
tation of the 8Be subsystem, and we cannot reproduce the
observed trend without the 8Be excitation.
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