Current
Home > Department of Advanced Photon Research > Kansai Institute for Photon Science  | Advanced Laser Science Group

Department of Advanced Photon Research

Kansai Institute for Photon Science  | Advanced Laser Science Group

Update:2024年4月1日更新
Display printing page

japaneseenglish

Advanced Laser Science Group

Leader: KIRIYAMA Hiromitsu

Group member

KIRIYAMA Hiromitsu Group Leader
FUKUDA Yuji Senior Principal Researcher
NISHIUCHI Mamiko Senior Principal Researcher
SAGISAKA Akito Principal Researcher
MIYASAKA Yasuhiro Senior Researcher
MASHIBA Yuji Engineer
OGURA Koichi Senior Expert
LIU Chang Postdoctoral Fellow
KON Akira Senior Engineer (concurrent post)
KONDO Kotaro Senior Researcher (concurrent post)
SAKAKI Hironao Senior Principal Researcher (concurrent post)
Alexander PIROZHKOV Senior Principal Researcher (concurrent post)
MINAMI Takumi QST Research Assistant
INOUE Chihiro QST Research Assistant
AKAI Jin QST Research Assistant
UENO Yuhei QST Research Assistant
TODA Hiroyuki Visiting Researcher (Doshisha University)
Laser Facility Operation Office Laser Operation Cooperation

 

Overview and activities

Overview

 We are conducting research on the world's most advanced ultra-high-intensity laser which contributes to applications in academic development, medical science and so on. By focusing an ultra-high-intensity laser and irradiating matter, it is possible to generate high-temperature and high-pressure states and strong electric and magnetic fields which cannot be reached by other existing methods. "High energy density science" to study such extreme states (high energy density states) is being actively researched in the world. Kansai Photon Science institute (KPSI) is advancing research and development utilizing the framework of "Collaboration and Cooperation on High Energy Density Science" by the Ministry of Education, Culture, Sports, Science and Technology (MEXT) and the US Department of Energy (DOE).

 

Activities

1) Ultra-high intensity “J-KAREN-P” laser development

 We are developing the laser, named J-KAREN-P, which produces an ultra-high intensity output of 1,000 trillion W (= 1 petawatt = 1 PW) equivalent to 1 million units of 1 million kW (=1 gigawatt) class thermal power plants in the extremely short time of about 1/30 trillion seconds (30 femtoseconds = 30 fs) and advanced technology for the laser beam. Although competition for the development of petawatt-class lasers is fierce in the world, the J-KAREN-P laser has world-class performance in terms of temporal quality (contrast performance) and spatial quality (focusing performance), which are the most important in experiments. In 2012, we have achieved the world's highest contrast performance which suppresses temporal optical noise to one trillionth of the laser main pulse intensity, and in 2020, we have eliminated many unnecessary pulses that precede the laser main pulse. In 2017, we have succeeded in producing the world's highest at-focus peak intensity of 1022 W / cm2. In collaboration with the High Field Science Research Group, we are also working on the technology called plasma mirrors for ultra-high contrast performance.

 With support from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan, we are constructing a network among Japan's leading power laser facilities (Institute of Laser Engineering, Osaka University; The Institute for Solid State Physics, The University of Tokyo; Institute for Chemical Research, Kyoto University; and RIKEN SPring-8 Center), including the maintenance and operation of the facilities. This will contribute to the sustainable maintenance and development of Japan's research and development infrastructure by creating a nationwide platform with advanced support systems for all researchers.

 

Fig. 1. View of the J-KAREN (Japan-Kansai Advanced Relativistic Engineering) laser.

Fig. 1. View of the J-KAREN-P (Japan-Kansai Advanced Relativistic Engineering Petawatt) laser.

Kiriyama et al., Opt. Lett. (2018/2020).

 

Fig. 2.  The J-KAREN laser beam was successfully focused to a small time-space region, achieving world-class temporal quality (left) and spatial quality (right).

Fig. 2.  The J-KAREN-P laser beam was successfully focused to a small time-space region, achieving world-class temporal quality (left) and spatial quality (right).

Pirozhkov et al., Opt. Express. (2017).

Kiriyama et al., High Power Laser Sci. Eng. (2021).

 

2) Advanced laser technology

2-1) High stability laser source

 We are researching and developing new technologies that can be used for the advancement and stabilization of various lasers including the J-KAREN-P laser. In order to obtain stable output power in optical parametric amplification, the timing of the pump laser and the signal laser to be amplified at the amplifier must be precisely synchronized. However, synchronizing the two oscillators electrically causes a timing jitter. We are developing an optically synchronous pump laser with a single oscillator to eliminate this jitter by creating a pump laser from the amplified laser output from the oscillator. The photonic crystal fiber is used to shift the wavelength (corresponding to the color of light) from the amplified laser to the seed for the pumped laser. We have been working on creating a long-pulse pump laser for use with ultra-intense lasers such as the J-KAREN-P laser. We have succeeded in generating a high energy nanosecond order laser pulse at a wavelength of 532nm with high stability. We are developing a high-intensity OPCPA laser using this highly stable pumping laser.

 

Fig. 3. Shifting the wavelength of the amplified laser using a photonic crystal fiber to generate the seed for the pump laser.

Fig. 3. Shifting the wavelength of the amplified laser using a photonic crystal fiber to generate the seed for the pump laser.

 

2-2) Optics for high average power laser

 The efficiency of the experiment and the range of applications is enhanced as more laser pulses are emitted per second. However, the thermal load on the laser system, mirrors, and other components will increase rapidly if the pulse energy is maintained with a high repetition rate. Heat accumulation and temperature rise will cause surface distortion of the mirrors and other optical components due to thermal expansion, which will degrade the quality of the laser propagating through the mirrors. We focused on sintered silicon carbide (SiC) to reduce the heat load, which has a high thermal conductivity. By using sintered SiC as a substrate, which has a thermal conductivity 130 times higher than that of widely used glass substrates, we have significantly reduced the substrate’s temperature rise by quickly removing heat (Fig. 4). In the future, we would like to develop optical element substrates withstanding higher average power by taking on the challenge of water cooling from inside the substrate.

 

Fig. 4. Thermal load-resistant optics using sintered silicon carbide (SiC) as a substrate (left) and how the temperature changes

Fig. 4. Thermal load-resistant optics using sintered silicon carbide (SiC) as a substrate (left) and how the temperature changes during heating (right).

Miyasaka et al., Crystals (2020).

 

2-3) Coherent beam combing

 Increasing the pulse energy is commonly used to enhance the intensity of the laser. However, there are technical limitations on the size of the laser crystals manufactured for use in large-aperture amplifiers. To solve this problem, we are developing a coherent beam coupling technique, in which laser beams are divided into multiple beams, amplified using a small laser crystal, and then re-coupled. This technique has been used mainly for fiber lasers. We are working on fundamental research to develop a simple coupling method for large lasers such as the J-KAREN-P laser without the feedback control to combine multiple lasers. This research is in collaboration with Doshisha University.

 

                                       a)

Fig. 5. (a) Image of an excited Ti:sapphire crystal pumped by a green laser.

                                       b)

Fig. 5. (b) Image of a typical laser amplification. Conventional methods cannot amplify beyond the damage limit of the laser crystal. Intense lasers break the laser crystal.

                                       c)

Fig. 5. (c) Image of laser amplification with coherent beam combining. By splitting lasers and amplifying them to the limit of their damage threshold and then combining them, a higher energy laser pulse can be produced. We are investigating methods for simple and precise laser beam combining.

Fig. 5. (a) Image of an excited Ti:sapphire crystal pumped by a green laser. (b) Image of a typical laser amplification. Conventional methods cannot amplify beyond the damage limit of the laser crystal. Intense lasers break the laser crystal. (c) Image of laser amplification with coherent beam combining. By splitting lasers and amplifying them to the limit of their damage threshold and then combining them, a higher energy laser pulse can be produced. We are investigating methods for simple and precise laser beam combining.

 

3) Ultra-High Intense Laser Field Sciences in Extreme Conditions

3-1) Laser ion acceleration at nearly the speed of light using astrophysical approach

 It is believed that cosmic rays that fall on the Earth have a velocity larger than 99% of the speed of light, and that most of them are particles accelerated statistically by shocks (called collisionless shocks) associated with the supernova explosion that occurs when the star reaches the end of its life (Fig. 6). High-intensity lasers enabled the production of materials in extreme conditions of ultra-high temperature and ultra-high pressure that human beings have never experienced before, and made it possible to accelerate the particles on the Earth by using collisionless shocks in the laboratory. By using large-scale computer simulations, in collaboration with Kyoto University, we discovered a new phenomenon of ion acceleration, named CSBA (= Converging Shock-induced Blow-off Acceleration) (patent number 7095196): When a laser is irradiated to a "spherical" object such as a cluster, a crescent-shaped collisionless shock is launched at the laser-irradiated hemisphere and propagates inward. The shock converges at the sphere center in concurrence with the onset of the relativistically induced transparency (RIT), allowing the proton bunch to be pushed out from the shock surface in the laser propagation direction (Fig. 6). The proton bunch experiences further acceleration both inside and outside of the cluster to finally exhibit a quasimonoenergetic spectral peak around 300 MeV (70 % of the speed of light).

 We have succeeded in developing the unique device to generate micron-scale hydrogen clusters, and in generating multi-MeV high-purity proton beams at 0.1 Hz (Fig. 7). Currently, using the J-KAREN-P laser, we are conducting joint research toward the realization of laser ion acceleration approaching the speed of light by using CSBA and staging acceleration in collaboration with external collaborators (Kobe University, Osaka University, Kyoto University, Nagoya University, The University of Tokyo, Tohoku University, Kyushu University, Queen's University Belfast (UK), Joint institute for High Temperatures of the Russian Academy of Sciences (Russia), Extreme Light Infrastructure-Nuclear Physics (Romania) etc.).

 

Figure 6. (Left) Cosmic ray acceleration due to collisionless shock is occurring on the surface of the supernova remnant SN1006.

Fig. 6. (Left) Cosmic ray acceleration due to collisionless shock is occurring on the surface of the supernova remnant SN1006. (Right) Result of large-scale computer simulation of interaction between high-intensity laser and hydrogen cluster (three-dimensional diagram). Energy distribution of protons accelerated by CSBA: A quasi-monochromatic proton beam (red bunch) accelerated by the shock at the center of the cluster fly away from the inside of the cluster to the outside, and is accelerated further to sub-GeV energies by the Coulomb explosion electric field in the laser propagation direction (+ y direction).

Matsui, Fukuda, Kishimoto, Phys. Rev. Lett. (2019).

 

Figure 7. (Left) Temperature-controllable hydrogen cluster generation system, originally developed by ourselves

Fig. 7. (Left) Temperature-controllable hydrogen cluster generation system, originally developed by ourselves and capable of generating micron-scale hydrogen clusters. (Right) Single-shot signal of multi-MeV high-purity protons measured by real-time Thomson parabola, developed by ourselves.

Jinno, Fukuda et al., Sci. Rep. (2022).

 

3-2) Development of a new heavy-ion accelerator by fusion of an unexplored ultra-high intensity electromagnetic field by an ultra-high intensity laser pulse and the state-of-the-art conventional accelerator technology.

 At this moment, up to number 118 elements are registered on the periodic table, and researchers in the world have been competing to identify the undetermined elements for the past 100 years. In 2015, the right for naming element 113 were granted to Japan (RIKEN). This is the first time that a new element has been discovered by a country other than the United States, Russia, or Germany.

 Elements heavier than uranium (No. 92) do not exist on earth unless they are artificially synthesized. They are called unstable nuclei and are extremely unstable, decaying in less than a millisecond (1/1000 of a second). Furthermore, their chemical properties are not even understood. Researchers in the world enthusiastically synthesize the unstable nuclei using nuclear reactors or state-of-the-art accelerators. To identify the existence of the undetermined elements researchers have to accelerate and guide them to detectors before it decays (Fig. 8). On the other hand, based on even the state-of-the-art accelerator technology it takes time to accelerate the synthesized unstable elements to a sufficient energy. This is even more difficult for heavier elements (e.g. super heavy elements.).

 In order to break through the current technological limitations, we propose one of the solutions, based on the high intensity laser technology, which we call Laser-driven Exotic Nuclei extraction and acceleration (LENex). We would like to establish this novel technique as a tool to explore the frontier of the nuclear physics.  In the technique we use high intensity laser pulse interacting with the solid density target (consists of accelerated heavy unstable elements). The laser pulse can generate an ultimately high acceleration field (>1012  V/m ), which is more than 6 orders of magnitude higher than that achieved in the conventional ion accelerator of 106  V/m. This extremely high acceleration field ionizes the heavy elements instantaneously and at the time accelerate them to higher energies. This technique (simultaneous and instantaneous ionization and acceleration of the heavy elements) shows high potential for an extraction of the unexplored unstable heavy elements, independent of their physical and chemical properties, once the technique is optimized and being under control., will thus open up the frontier of the nuclear physics.

 If an ultra-intense laser pulse is irradiated on a material, unusual extreme conditions are made. For example, it is generally impossible for laser light to penetrate into opaque materials such as metals. However, once the laser field is increased up to the relativistic intensity it is predicted theoretically that it can penetrate through into the classically opaque material, which is called “relativistic transparency”. We have succeeded in inducing a "relativistic transparency" to the intrinsically and classically opaque target material by controlling the temporal profile of the ultra-intense laser pulse with high precision (Figure 9). This enables the laser pulse to push all the electrons out of the target material by radiation pressure of the laser, an extraordinary high charge separation field to be established, and the field accelerates the ions in the target material to high energies. This acceleration mechanism can accelerate bulk of the target, while only the ions on the surface of the target material were accelerated based on the previous acceleration mechanisms (Target Normal Sheath Acceleration mechanism). We also found out experimentally that the mechanism is robust. The mechanism is thus a very promising acceleration method for the realization of a new laser-driven accelerator. In addition, the acceleration mechanism has brought us even exiting results; the proton beam with energies over 100 MeV (> 30% of the speed of light) barrier has been overcomes for the first time since the discovery of the laser-driven high energetic ion beam observation, a decade ago.

   These studies are conducted in close international collaboration between Helmholtz Zentrum Dresden Rossendorf in Germany; Imperial College London in UK; the Institute of Laser Science, Osaka University; and the Faculty of Science and Engineering, Kyushu University.

 

Fig. 8

Fig. 8. The black band in the center is consists of stable nuclei. The further the nuclei away from the black band, the more unstable they are.

M. Nishiuchi et. al. Phys. Plasmas. (2015)

M. Nishiuchi et. al. Plasma Phys Rep. (2016)

Fig. 9 Conceptual diagram of ion acceleration mechanism using relativistic transmission phenomena.

Fig. 9 Conceptual diagram of ion acceleration mechanism using relativistic transmission phenomena.

N. P. Dover, M. Nishiuchi, et al Phys. Rev. Lett. (2020).

N. P. Dover, T. Ziegler, K. Zeil, M. Nishiuchi. et. al, Light Sci. Appl. (2023).

T. Ziegler et al, ICUIL conference (2022).

Publication Lists

1. Papers (peer-reviewed)

2023

  • “ハイパワーレーザーの基礎”
    桐山 博光, 日本加速器学会誌, 19, 177 (2023).
  • “超高強度レーザーによる量子ビーム科学”
    桐山 博光,  宮坂 泰弘,  眞柴 雄司,  中新 信彦,  近藤 康太郎,  今 亮,  福田 祐仁,  西内 満美子,  ピロジコフ アレキサンダー,  匂坂 明人,  小倉 浩一,  神門 正城, フォトニクスニュース, 8, 4 (2023).
  • “Precise pointing control of high-energy electron beam from laser wakefield acceleration using an aperture”
    N. Nakanii, K. Huang, Ko. Kondo, H. Kiriyama, and M. Kando, Applied Physics Express, 16, 026001 (2023).
    DOI:10.35848/1882-0786/acb892
  • “Measurement Method for Laser-Accelerated Multi-hundred-MeV Protons Utilizing Multiple Coulomb Scattering in an Emulsion Cloud Chamber”
    T. Asai, C. Inoue, S.Jinno, N. Kitagawa, S. Kodaira, K. Morishima, Y. Fukuda, T. Yamauchi, and M. Kanasaki, Japanese Journal of Applied Physics, 62, 016506 (2023).
  • “Enhanced ion acceleration from transparency-driven foils demonstrated at two ultraintense laser facilities”
    N. P. Dover, T. Ziegler, S. Assenbaum, C. Bernert, S. Bock, F.-E. Brack, T. E. Cowan, E. J. Ditter, M. Garten, L. Gaus, I. Goethel, G. S. Hicks, H. Kiriyama, T. Kluge, J. K. Koga, A. Kon, Ko. Kondo, S. Kraft, F. Kroll, H. F. Lowe, J. Metzkes-Ng, T. Miyatake, Z. Najmudin, T. Püschel, M. Rehwald, M. Reimold, H. Sakaki, H.-P. Schlenvoigt, K. Shiokawa, M. E. P. Umlandt, U. Schramm, K. Zeil, and M. Nishiuchi, Light Science and Applications, 12, 71 (2023).
    DOI:10.1038/s41377-023-01083-9

2022

  • “J-KAREN-Pペタワットレーザーシステムとその利用研究の リモート化と自動化への取り組み”
    桐山 博光, 眞柴 雄司, 宮坂 泰弘, 中新 信彦, 近藤 康太郎, 今 亮,  福田 祐仁,  西内 満美子, レーザー研究, 50, 678 (2022).
  • “水素クラスターを用いたレーザー駆動高純度陽子加速-「光速」に近いGeV級イオンビーム発生に向けて-”
    福田 祐仁, レーザー研究, 50, 371 (2022).
  • “Characterization of plasma mirror system at J-KAREN-P facility”
    A. Kon, M. Nishiuchi, Y. Fukuda, Ko. Kondo, K. Ogura, A. Sagisaka, Y. Miyasaka, N. P. Dover, M. Kando, A. S. Pirozhkov, I. Daito, L. Chang, I. W. Choi, C. H. Nam, T. Ziegler, H.-P. Schlenvoigt, K. Zeil, U. Schramm, and H. Kiriyama, High Power Laser Science and Engineering, 10, e25 (2022).
    DOI:10.1017/hpl.2022.15
  • “Enhanced diagnostics of radiating relativistic singularities and BISER by nonlinear post-compression of optical probe pulse”
    A. V. Kotov, T. Zh. Esirkepov, A. A. Soloviev, A. Sagisaka, K. Ogura, A. Bierwage, M. Kando, H. Kiriyama, M. V. Starodubtsev, E. A. Khazanov, S. Yu. Mironov, and A. S. Pirozhkov, Journal of Instrumentation, 17, P07035 (2022).
    DOI:10.1088/1748-0221/17/07/P07035
  • “Laser-driven multi-MeV high-purity proton acceleration via anisotropic ambipolar expansion of micron-scale hydrogen clusters”
    S. Jinno, M. Kanasaki, A. Takafumi, R. Matsui, A. S. Pirozhkov, K. Ogura, A. Sagisaka, Y. Miyasaka, N. Nakanii, M. Kando, N. Kitagawa, K. Morishima, S. Kodaira, Y. Kishimoto, T. Yamauchi, M. Uesaka, and H. Kiriyama, Y. Fukuda, Scientific Reports, 12, 16753 (2022).
    DOI:10.1038/s41598-022-18710-x
  • “AnaBHEL (Analog Black Hole Evaporation via Lasers) Experiment: Concept, Design, and Status”
    P. Chen, G. Mourou, M. Besancon, Y. Fukuda, J.-F. Glicenstein, J. Nam, C.-E. Lin, K.-N. Lin, S.-X. Liu, Y.-K. Liu, M. Kando, Ko. Kondo, S. Paganis, A. S. Pirozhkov, H. Takabe, B. Tuchming, W.-P. Wang, N. Watamura, J. Wheeler, and H.-Y. Wu, Photonics, 9, 1003 (2022).
    DOI:https://doi.org/10.3390/
  • “原子核乾板を利用した高エネルギーレーザー加速陽子線計測手法の230MeV加速器陽子線に対する実証実験”
    浅井 孝文,  井上 千裕,  神野 智史,  北川 暢子,  小平 聡,  森島 邦博,  福田 祐仁,  山内 知也,  金崎 真聡, ESI-NEWS,  40(5), 1 - 8 (2022).
  • “多段シンチレータを用いた多核種GeV イオン計測器の開発—レーザーイオン加速実験における活用とその展望—”
    南 卓海,  時安 敦史,  郡 英輝,  安部 勇輝,  岩崎 滉,  田口 智也,  小田 和昌,  鈴木 蒼一郎,  浅井 孝文,  境 健太郎,  姫野 公輔,  田中 周太,  諌山 翔伍,  金崎 真聡,  小平 聡,  福田 祐仁,  蔵満 康浩, ESI-NEWS, 40(4), 1 – 9 (2022).
  • “Mass-resolved ion measurement by particle counting analysis for characterizing relativistic ion beams driven by lasers”
    T. Minami, A. Tokiyasu, H. Kohri, Y. Abe, K. Iwasaki, T. Taguchi, K. Oda, S. Suzuki, T. Asai, S. Tanaka, S. Isayama, M. Kanasaki, S. Kodaira, Y. Fukuda, and Y. Kuramitsu, Review of Scientific Instruments, 93, 113530 (2022).
    DOI:10.1063/5.0101872
  • “Nanoscale subsurface dynamics of solids upon high-intensity femtosecond laser irradiation observed by grazing-incidence x-ray scattering”
    L. Randolph,  M. Banjafar,  T. R. Preston,  T. Yabuuchi,  M. Makita,  N. P. Dover,  S. Göde,  Y. Inubushi,  G. Jakob,  J. Kaa,  A. Kon,  J. K. Koga,  D. Ksenzov,  T. Matsuoka,  M. Nishiuchi,  M. Paulus,  Ch. Rödel,  F. Schon,  K. Sueda,  Y. Sentoku,  T. Togashi,  M. Vafaee-Khanjani,  M. Bussmann,  T. E. Cowan,  M. Kläui,  C. Fortmann-Grote,  A. P. Mancuso,  T. Kluge,  C. Gutt,  and M. Nakatsutsumi, Physical Review Research, 4, 33038 (2022).
    DOI:10.1103/PhysRevResearch.4.033038
  • “A multi-stage scintillation counter for GeV-scale multi-species ion spectroscopy in laser-driven particle acceleration experiments” 
    Y. Abe, H. Kohri, A. Tokiyasu, T. Minami, H. Iwasaki, T. Taguchi, T. Asai, M. Kanasaki, S. Kodaira, S. Fujioka, Y. Kuramitsu, and Y. Fukuda, Rev. Sci. Instrum. 93, 063502 (2022). 
    DOI:10.1063/5.0078817
  • “Robustness of large-area suspended graphene under interaction with intense laser” 
    Y. Kuramitsu, T. Minami, T. Hihara, K. Sakai, T. Nishimoto, S. Isayama, Y.T. Liao, K.T. Wu, W.Y. Woon, S.H. Chen, Y.L. Liu, S.M. He, C.Y. Su, M. Ota, S. Egashira, A. Morace, Y. Sakawa, Y. Abe, H. Habara, R. Kodama, L. N. K. Dohl, N. Woolsey, M. Koenig, H. S. Kumar, N. Ohnishi, M. Kanasaki, T. Asai, T. Yamauchi, K. Oda, Ko. Kondo, H. Kiriyama, and Y. Fukuda, Scientific Reports 12, 2346 (2022). 
    DOI:10.1038/s41598-022-06055-4
  • “In-Target Proton–Boron Nuclear Fusion Using a PW-Class Laser” 
    D. Margarone, J. Bonvalet, L. Giuffrida, A. Morace, V. Kantarelou, M. Tosca, D. Raffestin, P. Nicolai, A. Picciotto, Y. Abe, Y. Arikawa, S. Fujioka, Y. Fukuda, Y. Kuramitsu, H. Habara, and D. Batani, Applied Sciences 12, 1444 (2022). 
    DOI:10.3390/app12031444
  • 極端紫外 (EUV) 域低入射角高回折効率ラミナー型回折格子の設計
    小池 雅人,  村野 孝訓,  越谷 翔悟,  羽多野 忠,  ピロジコフ アレキサンダー,  垣尾 翼,  林 信和,  長野 哲也,  近藤 公伯,  寺内 正己, X線分析の進歩, 53, 70 (2022).

 

2021

  • “Enhancement of pre-pulse and picosecond pedestal contrast of the petawatt J-KAREN-P laser”
    H. Kiriyama, Y. Miyasaka, A. Kon, M. Nishiuchi, A. Sagisaka, H. Sasao, A. S. Pirozhkov, Y. Fukuda, K. Ogura, Ko. Kondo, M. Kando, and N. P. Dover, High Power Laser Science and Engineering, 9, e62 (2021). 
    DOI:10.1017/hpl.2021.51
  • “Discriminative detection of laser-accelerated multi-MeV carbon ions utilizing solid state nuclear track detectors”
    T. Hihara, M. Kanasaki, T. Asai, T. Kusumoto, S. Kodaira, H. Kiriyama, K. Oda, T. Yamauchi, W.-Y. Woon, Y. Kuramitsu, and Y. Fukuda, Scientific Reports, 11, 16283 (2021). 
    DOI:10.1038/s41598-021-92300-1
  • “Broadband normal-incidence mirrors for a range of 111–138 Å based on an a-periodic Mo/Be multilayer structure”
    M. M. Barysheva, S. A. Garakhin, A. O. Kolesnikov, A. S. Pirozhkov, V. N. Polkovnikov, E. N. Ragozin, A. N. Shatokhin, R. M. Smertin, M. V. Svechnikov, and E. A. Vishnyakov, Optical Materials Express, 11, 3038 (2021). 
    DOI:10.1364/OME.434506
  • “Deconvolution of X-ray Spectra from Linear Absorption Spectrometer via Parameter Reduction and Merit-Function Optimisation Routine” 
    C. D. Armstrong, D. Neely, D. Kumar, P. McKenna, R. J. Gray, and A. S. Pirozhkov, Review of Scientific Instruments, 92, 113102 (2021). 
    DOI:10.1063/5.0057486
  • “Relativistic flying laser focus by a laser-produced parabolic plasma mirror”
    T. M. Jeong, S. Bulanov, P. Valenta, G. Korn, E. Zh. Timur, J. K. Koga, A. S. Pirozhkov, K. Masaki, and S. S. Bulanov, Physical Review A, 104, 053533 (2021).
    DOI:10.1103/PhysRevA.104.053533
  • “Design and experimental evaluation of enhanced diffraction efficiency of lanthanum-based material coated laminar-type gratings in boron K-emission region”
    T. Hatano, M. Koike, M. Terauchi, A. S. Pirozhkov, N. Hayashi, H, Sasai, and T. Nagano, Applied Optics, 60, 4993 (2021).
    DOI:10.1364/AO.430802
  • “Highly stable sub-nanosecond Nd:YAG pump laser for optically synchronized optical parametric chirped-pulse amplification”
    Y. Miyasaka, Ko. Kondo, M. Kishimoto, M. Mori, M. Kando, and H. Kiriyama, Optics express, 29, 32404 (2021).
    DOI:10.1364/OE.430953
  • “Energetic α-particle sources produced through proton-boron reactions by high-energy high-intensity laser beams” 
    J. Bonvalet, Ph. Nicolaï, D. Raffestin, E. D’humieres, D. Batani, V. Tikhonchuk, V. Kantarelou, L. Giuffrida, M. Tosca, G. Korn, A. Picciotto, A. Morace, Y. Abe, Y. Arikawa, S. Fujioka, Y. Fukuda, Y. Kuramitsu, H. Habara, and D. Margarone, Physical Review E 103, 053202 (2021). 
    DOI: 10.1103/PhysRevE.103.053202
  • “Proton beam quality enhancement by spectral phase control of a PWclass laser system”
    T. Ziegler, D. Albach, C. Bernert, S. Bock, F.‑E. Brack, T. E. Cowan, N. P. Dover, M. Garten, L. Gaus, R. Gebhardt, I. Goethel, U. Helbig, A. Irman, H. Kiriyama, T. Kluge, K. Akira, S. Kraft, F. Kroll, M. Loeser, J. Metzkes‑Ng, N. Mamiko, L. Obst‑Huebl, T. Püschel, M. Rehwald, H.‑P. Schlenvoigt, U. Schramm, and K. Zeil,Scientific Report, 11, 7338 (2021).
    DOI:10.1038/s41598-021-86547-x
  • “Analysis of Lyα dielectronic satellites to characterize temporal profile of intense femtosecond laser pulses”
    S. N. Ryazantsev, I. Yu. Skobelev, A. S. Martynenko, M. A. Alkhimova, M. D. Mishchenko, M. V. Sedov, T. A. Pikuz, Y. Fukuda, H. Kiriyama, A. S. Pirozhkov, and S. A. Pikuz, Crystals, 11, 130 (2021).
    DOI:10.3390/cryst11020130
  • “Optimization and stabilization of a kilohertz laser-plasma accelerator”
    L. Rovige, J. Huijts, I. A. Andriyash, A. Vernier, M. Ouille, Z. Cheng, Takafumi Asai, Y. Fukuda, V. Tomkus, V. Girdauskas, G. Raciukaitis, J. Dudutis, V. Stankevic, P. Gecys, R. Lopez-Martens, and J. Faure, Physics of Plasmas, 28, 033105 (2021). 
    DOI:10.1063/5.0040926
  • “Soft X-ray spectrometers based on aperiodic reflection gratings and their application”
    E. N. Ragozin, E. A. Vishnyakov, A. O. Kolesnikov, A. S. Pirozhkov, A. N. Shatokhin, Physics-Uspekhi, 64 (5) (2021).
    DOI:10.3367/UFNe.2020.06.038799
  • “2020 roadmap on plasma accelerators”
    F. Albert, M. Couprie, A. Debus, M. C. Downer, J. Faure, A. Flacco, L. A. Gizzi, T. Grismayer, A. Hueb, C. Joshi, M. Labat, W. P. Leemans, A. R. Maier, S. P. D. Mangles, P. Mason, F. Mathieu, P. Muggli, M. Nishiuchi, J. Osterhoff, P. P. Rajeev, U. Schramm, J. Schreiber, A. G. R. Thomas, J. Vay, M. Vranic, and K. Zeil, New Journal Physics, 23, 031101 (2021).
  • “Absolute response of a Fuji BAS-TR imaging plate to low-energy protons (< 0.2 MeV) and carbon ions (< 1 MeV) ” 
    S. Kojima, T. Miyatake, S. Inoue, T. Dinh, N. Hasegawa, M. Mori, H. Sakaki, M. Nishiuchi, N.  P. Dover, Y. Yamamoto, T. Sasaki, F. Itou, Ko. Kondo, T. Yamanaka, M. Hashida, S. Sakabe, M. Nishikino, and K. Kondo, Review of Scientific Instruments, 92, 033306 (2021).
    DOI:10.1063/5.0035618

 

2020

  • “Development of carbon thin film for Laserdriven heavy ion acceleration using a XeCl excimer laser”
    M. Kusaba, F. Nigo, K. Kondo, M. Nishiuchi, H. Sakaki, H. Kiriyama, M. Hashida, and S. Sakabe, IEEJ Transactions on Electrical and Electronic Engineering, 103, 16 (2020). 
    DOI:10.1002/ecj.12286
  • “Characterization of Accumulated B-Integral of Regenerative Amplifier Based CPA Systems”
    S. Bock, F. M. Herrmann, T. Püschel, U. Helbig, R. Gebhardt, J. J. Lötfering, R. Pausch, K. Zeil, T. Ziegler, A. Irman, T. Oksenhendler, A. Kon, M. Nishiuchi, H. Kiriyama, K. Kondo, T. Toncian, and U. Schramm, Crystals, 10, 847 (2020). 
    DOI:10.3390/cryst10090847
  • “High intensity laser driven oxygen source from CW laser heated titanium tape targets”
    Ko. Kondo, M. Nishiuchi, H. Sakaki, N. P. Dover, H. F. Lowe, T. Miyahara, Y. Watanabe, T. Ziegler, K. Zeil, U. Schramm, E. J. Ditter, G. S. Hicks, O. C. Ettlinger, Z. Najmudin, H. Kiriyama, M. Kando, and K. Kondo, Crystals, 10, 837 (2020).
    DOI:10.3390/cryst10090837
  • “High-thermal-conductivity SiC ceramic mirror for high-average-power laser system”
    Y. Miyasaka, Ko. Kondo, H. Kiriyama, Crystals, 10, 831, (2020).
    DOI:10.3390/cryst10090831
  • “Petawatt femtosecond laser pulses from titanium-doped sapphire crystal”
    H. Kiriyama, A. S. Pirozhkov, M. Nishiuchi, Y. Fukuda, A. Sagisaka, A. Kon, Y. Miyasaka, K. Ogura, N. P. Dover, Ko. Kondo, H. Sakaki, J. K. Koga, T. Zh. Esirkepov, K. Huang, N. Nakanii, M. Kando, K. Kondo, S. Bock, T. Ziegler, T. Püschel, K. Zeil, and U. Schramm, Crystals, 10, 783, (2020).
    DOI:10.3390/cryst10090783
  • “Single-shot measurement of post-pulse-generated pre-pulse in high power laser systems”
    A. Kon, M. Nishiuchi, H. Kiriyama, M. Kando, S. Bock, T. Ziegler, T. Pueschel, K. Zeil, U. Schramm, and K. Kondo, Crystals, 10, 657 (2020).
    DOI:10.3390/cryst10080657
  • “Dynamics of Laser-driven Heavy Ion Acceleration Clarified by Ion Charge States”
    M. Nishiuchi, N. P. Dover, M. Hata, H. Sakaki, K. Kondo, H. F. Lowe, T. Miyahara, H. Kiriyama, J. K. Koga, N. Iwata, M. Alklhimova, A. S. Pirozhkov, A. Faenov, P. Tatiana, A. Sagisaka, Y. Watanabe, M. Kando, K. Kondo, E. J. Ditter, O. Ettlinger, G. Hicks, N. Zuflkar, T. Ziegler, K. Zeil, U. Schramm, and Y. Sentoku, Physical Review Research, 2, 033081 (2020).
    DOI:10.1103/PhysRevResearch.2.033081
  • “Status and progress of the J-KAREN-P high intensity laser system at QST”
    H. Kiriyama, A. S. Pirozhkov, M. Nishiuchi, Y. Fukuda, K. Ogura, A. Sagisaka, Y. Miyasaka, H. Sakaki, N. P.r Dover, K. Kondo, H. F. Lowe, A. Kon, J. K. Koga, T. Zh. Esirkepov, N. Nakanii, K. Huang, M. Kando, and K. Kondo, High Energy Density Physics, 36, 100771 (2020).
    DOI:10.1016/j.hedp.2020.100771
  • “Demonstration of repetitive energetic proton generation by ultra-intense laser interaction with a tape target”
    N. P. Dover, M. Nishiuchi, H. Sakaki, Ko. Kondo, M. A. Alkhimova, A. Ya. Faenov, M. Hata, N. Iwata, H. Kiriyama, J. K. Koga, T. Miyahara, T. A. Pikuz, A. S. Pirozhkov, A. Sagisaka, Y. Sentoku, Y. Watanabe, M. Kando, K. Kondo, H. F. Lowe, E. J. Ditter, O. C. Ettlinger, G. S. Hicks, Z. Najmudin, U. Schramm, T. Ziegler, and K. Zeil, High Energy Density Physics, 37, 100847 (2020).
    DOI:10.1016/j.hedp.2020.100847
  • “Experimental investigation on temporal contrast of pre-pulses by post-pulses in a petawatt laser facility”
    H. Kiriyama, Y. Miyasaka, A. Sagisaka, K. Ogura, M. Nishiuchi, A. S. Pirozhkov, Y. Fukuda, M. Kando, and K. Kondo, Optics Letters, 45, 1100 (2020).
    DOI:10.1364/OL.384759
  • “Effect of small focus on electron heating and proton acceleration in ultra-relativistic laser-solid interactions”
    N. P. Dover, M. Nishiuchi, H. Sakaki, K. Kondo, M. A. Alkhimova, A. Ya. Faenov, M. Hata, N. Iwata, H. Kiriyama, J. K. Koga, T. Miyahara, T. A. Pikuz, A. S. Pirozhkov, A. Sagisaka, Y. Sentoku, Y. Watanabe, M. Kando, and K. Kondo, Physical Review Letters, 124, 084802 (2020).
    DOI:10.1103/PhysRevLett.124.084802
  • 「XeClエキシマレーザを用いた高強度レーザ駆動重イオン加速用炭素薄膜の開発」
    草場 光博, 児子 史崇, 近藤 康太郎, 西内 満美子, 榊 泰直, 桐山 博光, 橋田 昌樹, 阪部 周二, 電気学会論文誌A, 140, 395, (2020).
    DOI:10.1541/ieejfms.140.395
  • “Observation of Burst Intensification by Singularity Emitting Radiation generated from relativistic plasma with a high-intensity laser”
    A. Sagisaka, K. Ogura, T. Zh. Esirkepov, D. Neely, T. A. Pikuz, J. K. Koga, Y. Fukuda, H. Kotaki, Y. Hayashi, B. Gonzalez-Izquierdo, K. Huang, S. Bulanov, H. Kiriyama, K. Kondo, T. Kawachi, M. Kando, and A. S. Pirozhkov, High Energy Density Physics, 36, 100751 (2020).
    DOI:10.1016/j.hedp.2020.100751
  • “Relativistic flying forcibly oscillating reflective diffraction grating”
    J. Mu, T. Zh. Esirkepov, P. Valenta, Y. Gu, T. M. Jeong, A. S. Pirozhkov, J. K. Koga, M. Kando, G. Korn, and S. V. Bulanov, Physical Review E, 102, 053202 (2020).
    DOI:10.1103/PhysRevE.102.053202
  • “Soft X-ray spectrometers based on aperiodic reflection gratings and their application”
    E. N. Ragozin, E. A. Vishnyakov, A. O. Kolesnikov, A. S. Pirozhkov, A. N. Shatokhin, Physics-Uspekhi, 64(5), 495(2020).
    DOI:10.3367/UFNe.2020.06.038799
  • “Optical probing of relativistic plasma singularities”
    T. Zh. Esirkepov, J. Mu, Y. Gu, T. M. Jeong, P. Valenta, O. Klimo, J. K. Koga, M. Kando, D. Neely, G. Korn, S. Bulanov, and A. S. Pirozhkov, Physics of plasmas, 27, 052103 (2020).
    DOI:10.1063/5.0004525
  • “Recoil effects on reflection from relativistic mirrors in laser plasmas”
    P. Valenta, T. Zh. Esirkepov, J. K. Koga, A. S. Pirozhkov, M. Kando, T. Kawachi, Y.-K. Liu, P. Fang, P. Chen, J. Mu, G. Korn, O. Klimo, and S. Bulanov, Physics of Plasmas, 27, 032109 (2020).
    DOI:10.1063/1.5142084
  • “Generation of α-Particle Beams With a Multi-kJ, Peta-Watt Class Laser System”
    D. Margarone, A. Morace, J. Bonvalet, Y. Abe, V. Kantarelou, D. Raffestin, L. Giuffrida, P. Nicolai, M. Tosca, A. Picciotto, G. Petringa, G. A. P. Cirrone, Y. Fukuda, Y. Kuramitsu, H. Habara, Y. Arikawa, S.Fujioka, E. D’Humieres, G. Korn, and D. Batani, Frontiers in Physics, 8, 343 (2020).
    DOI:10.3389/fphy.2020.00343
  • “Correction method for the energy spectrum of laser-accelerated protons measured by CR-39 track detectors with stepwise energy filters”
    M. Kanasaki, K. Sakamoto, T. Asai, S. Jinno, S. Kodaira, T. Yamauchi, K. Oda, and Y. Fukuda, High Energy Density Physics, 37, 100852 (2020).
    DOI:10.1016/j.hedp.2020.100852
  • “Application of CR-39 Solid State Nuclear Track Detectors to Laser-Driven Ion Acceleration Experiments”
    M. Kanasaki, T. Yamauchi, K. Oda, and Y. Fukuda, Progress in Ultrafast Intense Laser Science XV, Topics in Applied Physics, 136, 133 (2020).
    DOI:10.1007/978-3-030-47098-2_7
  • “Ion species discrimination method by linear energy transfer measurement in Fujifilm BAS-SR Imaging Plate”
    M. Nishiuchi, H. Sakaki, N. P. Dover, T. Miyahara, K. Shiokawa, S. Manabe, T. Miyatake, Ko. Kondo, Ke. Kondo, Y. Iwata, Y. Watanabe, and Ki. Kondo, Review of Scientific Instruments, 91, 093305 (2020).
  • “New algorithm using L1 regularization for measuring electron energy spectra”
    H. Sakaki, T. Yamashita, T. Akagi, M. Nishiuchi, N. P. Dover, H. F. Lowe, Ko. Kondo, A. Kon, M. Kando,1 Y. Tachibana, T. Obata, K. Shiokawa, T. Miyatake, and Y. Watanabe, Review of Scientific Instruments, 91, 075116 (2020).
    DOI:10.1063/1.5144897

 

2019

  • “High-Order Harmonics from Laser Irradiated Electron Density Singularity Formed at the Bow Wave in the Laser Plasma”
    J. Mu, Timur Esirkepov, P. Valenta, T. M. Jeong, Ya. Gu, J. K. Koga, A. S. Pirozhkov, M. Kando, G. Korn, and S. Bulanov, Physics of Wave Phenomena, 27, 247 (2019).
    DOI:10.3103/S1541308X19040010
  • “Similarity of magnetized plasma wake channels behind relativistic laser pulses with different wavelengths”
    A. Bierwage, T. Zh. Esirkepov, J. K. Koga, and A. S. Pirozhkov, Computer Physics Communications, 244, 49 (2019).
    DOI:10.1016/j.cpc.2019.07.004
  • “Collisionless electrostatic shock acceleration of proton using high intensity laser”
    M. Ota, A. Morace, R. Kumar, S. Kambayashi, S. Egashira, M. Kanasaki, Y. Fukuda, and Y. Sakawa, High Energy Density Physics, 33, 100697 (2019).
    DOI:10.1016/j.hedp.2019.100697
  • “Dynamics of the boundary layer created by the explosion of a dense object in an ambient dilute gas triggered by a high power laser”
    R. Matsui, Y. Fukuda, and Y. Kishimoto, Physical Review E, 100, 013203 (2019).
    DOI:10.1103/PhysRevE.100.013203
  • “Application of nuclear emulsions for the identification of multi-MeV protons in laser ion acceleration experiments”
    T. Asai, M. Kanasaki, S. Jinno, N. Kitagawa, N. Shutoh, S. Kodaira, T. Yamauchi, K. Oda, K. Morishima, and Y. Fukuda, High Energy Density Physics, 32, 44 (2019).
    DOI:10.1016/j.hedp.2019.04.002
  • “Quasimonoenergetic Proton Bunch Acceleration Driven by Hemispherically Converging Collisionless Shock in a Hydrogen Cluster Coupled with Relativistically Induced Transparency”
    R. Matsui, Y. Fukuda, and Y. Kishimoto, Physical Review Letters, 122, 014804 (2019).
    DOI:10.1103/PhysRevLett.122.014804

 

2018

  • “High-contrast high-intensity repetitive petawatt laser”
    H. Kiriyama, A. S. Pirozhkov, M. Nishiuchi, Y. Fukuda, K. Ogura, A. Sagisaka, Y. Miyasaka, M. Mori, H. Sakaki, N. P. Dover, Ko. Kondo, J. K. Koga, T. Zh. Esirkepov, M. Kando, and K. Kondo, Optics Letters, 43, 2595 (2018).
    DOI:10.1364/OL.43.002595
  • “Laser Requirements for High-Order Harmonic Generation by Relativistic Plasma Singularities”
    A. S. Pirozhkov, T. Zh. Esirkepov, T. A. Pikuz, A. Ya. Faenov, A. Sagisaka, K. Ogura, Y. Hayashi, H. Kotaki, E. N. Ragozin, D. Neely, J. K. Koga, Y. Fukuda, M. Nishikino, T. Imazono, N. Hasegawa, T. Kawachi, H. Daido, Y. Kato, S. V. Bulanov, K. Kondo, H. Kiriyama, and M. Kando, Quantum Beam Science, 2, 7 (2018).
    DOI:10.3390/qubs2010007
  • “UV Harmonic Generation and Laser-Driven Proton Acceleration from Thin-Foil Target”
    A. Sagisaka, A. S. Pirozhkov, M. Nishiuchi, K. Ogura, H. Sakaki, A. Ya. Faenov, T. A. Pikuz, T. Zh. Esirkepov, S. Bulanov, M. Kando, H. Kiriyama, and K. Kondo, The Review of Laser Engineering, 46, 148 (2018).
  • “Ion acceleration experiment with the high intensity, high contrast J-KAREN-P laser system”
    M. Nishiuchi, H. Kiriyama, H. Sakaki, N. P. Dover, K. Kondo, T. Miyahara, J. K. Koga, A. S. Pirozhkov, A. Sagisaka, Y. Fukuda, K. Ogura, Y. Watanabe, M. Kando, and K. Kondo, The review of laser engineering, 46, 145 (2018).
  • “Random spectral phase noise effect on the temporal contrast of ultra-high intensity laser pulse”
    H. Kiriyama, Y. Mashiba, Y. Miyasaka, and M. R. Asakawa, The Review of Laser Engineering, 46, 142 (2018).
  • “The J-KAREN-P facility laser performance status”
    H. Kiriyama, M. Nishiuchi, A. S. Pirozhkov, Y. Fukuda, H. Sakaki, A. Sagisaka, N. P. Dover, Ko. Kondo, K. Ogura, M. Mori, Y. Miyasaka, N. Nakanii, K. Huang, J. K. Koga, T. Zh. Esirkepov, M. Kando, and K. Kondo, The Review of Laser Engineering, 46, 134 (2018).
  • “Relativistically upshifted higher harmonic generation via relativistic flying mirrors”
    J. K. Koga, S. V. Bulanov, T. Zh. Esirkepov, M. Kando, S. S. Bulanov, and A. S. Pirozhkov, Plasma Physics and Controlled Fusion, 60, 074007 (2018).
    DOI:10.1088/1361-6587/aac068
  • “Coherent, Short-Pulse X-ray Generation via Relativistic Flying Mirrors”
    M. Kando, T. Zh. Esirkepov, J. K. Koga, A. S. Pirozhkov, and S. V. Bulanov, Quantum Beam Science, 2, 9 (2018).
    DOI:10.3390/qubs2020009
  • “Aperiodic reflection diffraction gratings for soft X-ray radiation and their application”
    E. A. Vishnyakov, A. O. Kolesnikov, A. S. Pirozhkov, E. N. Ragozin, and A. N. Shatokhin, Quantum Electronics, 48, 916 (2018).
    DOI:10.1070/QEL16707
  • “Spectral characterisation of aperiodic normal-incidence Sb/B4C multilayer mirrors for the λ < 124 Å range”
    E. A. Vishnyakov, I. A. Kopylets, V. V. Kondratenko, A. O. Kolesnikov, A. S. Pirozhkov, E. N. Ragozin, and A. N. Shatokhin, Quantum Electronics, 48, 189 (2018).
    DOI:10.1070/QEL16574
  • “Review of HPLSE special issue on target fabrication”
    C. Spindloe, Y. Fukuda, P. Fitzsimmons, K. Du, and C. Danson, High Power Laser Science and Engineering, 6, e13 (2018).
    DOI:10.1017/hpl.2018.10
  • “Transition from nonlocal electron transport to radiative regime in an expanding blast wave”
    A. Marocchino, A. Ravasio, A. Levy, L. Lancia, Y. Fukuda, S. Jinno, S. Atzeni, D. Doria, C. Prigent, E. Lamour, D. Vernhet, M. Borghesi, and L. Romagnani, Applied Physics Letters, 112, 264104 (2018).
    DOI:10.1063/1.5022698
  • “Micron-size Hydrogen Cluster Target for Laser-Driven Proton Acceleration”
    S. Jinno, M. Kanasaki, M. Uno, R. Matsui, M. Uesaka, Y. kishimoto, and Y. Fukuda, Plasma Physics and Controlled Fusion, 60, 044021 (2018).
    DOI:10.1088/1361-6587/aaafa8
  • “Development of Carbon-Ion Radiotherapy Facilities at NIRS”
    Y. Iwata, T. Fujita, T. Fujimoto, T. Furukawa, Y. Hara, K. Kondo, K. Mizushima, T. Murakami, M. Muramatsu, M. Nishiuchi, E. Noda, K. Noda, H. Sakaki, N. Saotome, Y. Saraya, S. Sato, T. Shirai, and R. Tansho, IEEE Transactions on Applied Superconductivity, 28, 4400807 (2018).
    DOI:10.1109/TASC.2017.2785835

 

2017

  • “High resolution X-ray spectra of stainless steel foils irradiated by femtosecond laser pulses with ultra-relativistic intensities”
    M. A. Alkhimova, A. Ya. Faenov, I. Yu. Skobelev, T. A. Pikuz, M. Nishiuchi, H. Sakaki, A. S. Pirozhkov, A. Sagisaka, N. P. Dover, Ko. Kondo, K. Ogura, Y. Fukuda, H. Kiriyama, K. Nishitani, T. Miyahara, Y. Watanabe, S. A. Pikuz, M. Kando, R. Kodama, and K. Kondo, Optics Express, 25, 2950 (2017).
    DOI:10.1364/OE.25.029501
  • “Scintillator-based transverse proton beam profiler for laser-plasma ion sources”
    N. P. Dover, M. Nishiuchi, H. Sakaki, M. A. Alkhimova, A. Ya. Faenov, Y. Fukuda, H. Kiriyama, A. Kon, Ko. Kondo, K. Nishitani, K. Ogura, T. A. Pikuz, A. S. Pirozhkov, A. Sagisaka, M. Kando, and K. Kondo, Review of Scientific Instruments, 88, 073304 (2017).
    DOI:10.1063/1.4994732
  • “Approaching the diffraction-limited, bandwidth-limited Petawatt”
    A. S. Pirozhkov, Y. Fukuda, M. Nishiuchi, H. Kiriyama, A. Sagisaka, K. Ogura, M. Mori, M. Kishimoto, H. Sakaki, N. P. Dover, Ko. Kondo, N. Nakanii, K. Huang, M. Kanasaki, K. Kondo, and M. Kando, Optics Express, 25, 20486 (2017).
    DOI:10.1364/OE.25.020486
  • “High power Laser Facilities in Kansai Photon Science Institute”
    K. Kondo, W. Utsumi, M. Kando, M. Nishikino, R. Itakura, and H. Kiriyama, Quantum Beam Science, 1, 7 (2017).
    DOI:10.3390/qubs1010007
  • “High-dynamic-range cross-correlator for shot-to-shot measurement of temporal contrast”
    A. Kon, M. Nishiuchi, H. Kiriyama, K. Ogura, M.i Mori, H. Sakaki, M. Kando, and K. Kondo, Japanese Journal of Applied Physics, 56, 012701 (2017).
    DOI:10.7567/jjap.56.012701
  • “Development of Stable Seed Pulses for Optically Synchronized Optical Parametric Chirped-Pulse Amplifier Pumping”
    Y. Miyasaka, H. Kiriyama, M. Kishimoto, M. Mori, M. Kando, and K. Kondo, The Review of Laser Engineering, 45, 108 (2017).
  • “Burst intensification by singularity emitting radiation in multi-stream flows”
    A. S. Pirozhkov, T. Zh. Esirkepov, T. A. Pikuz, A. Ya. Faenov, K. Ogura, Y. Hayashi, H. Kotaki, E. N. Ragozin, D. Neely, H. Kiriyama, J. K. Koga, Y. Fukuda, A. Sagisaka, M. Nishikino, T. Imazono, N. Hasegawa, T. Kawachi, P. R. Bolton, H. Daido, Y. Kato, K. Kondo, S. V. Bulanov, and M. Kando, Scientific Reports, 7, 17968 (2017).
    DOI:10.1038/s41598-017-17498-5
  • “Plasma mirror implementation on LFEX laser for ion and fast electron fast ignition”
    A. Morace, S. Kojima, Y. Arikawa, S. Fujioka, A. Yogo, S. Tosaki, S. Sakata, Y. Abe, S. H. Lee, K. Matsuo, A. Sagisaka, K. Kondo, A. S. Pirozhkov, T. Norimatsu, T. Jitsuno, N. Miyanaga, H. Shiraga, M. Nakai, H. Nishimura, and H. Azechi, Nuclear Fusion, 57, 126018 (2017).
    DOI:10.1088/1741-4326/aa74ec
  • 「オンライン型トムソンパラボラスペクトロメータによるレーザー加速イオンのリアルタイム計測」
    神野 智史, 福田 祐仁, 放射線化学, 104, 41 (2017).
  • 「固体飛跡検出器 CR-39を用いたレーザー加速イオンのエネルギースペクトル及び空間分布の高精度計測」
    金崎 真聡, 小田 啓二, 山内 知也, 福田 祐仁, 放射線化学, 104, 35 (2017).
  • “Characterization of micron-size hydrogen clusters using Mie scattering”
    S. Jinno, H. Tanaka, R. Matsui, M. Kanasaki, H. Sakaki, M. Kando, K. Kondo, A. Sugiyama, M. Uesaka, Y. Kishimoto, and Y. Fukuda, Optics Express, 25, 18774 (2017).
    DOI:10.1364/OE.25.018774
  • “Ion pinhole imaging diagnostics on fast ion source in femtosecond laser plasma of cluster targets”
    S. Makarov, S. Pikuz, A. Faenov, T. Pikuz, Y. Fukuda, I. Skobelev, I. Zhvaniya, S. Varzar, M. Kando, and R. Kodama, Optics Express, 25, 16419 (2017).
    DOI:10.1364/OE.25.016419
  • “Numerical modelling of the cluster targets for their optimization in femtosecond-laser-cluster-driven experiments”
    A. S. Boldarev, A. Y. Faenov, Y. Fukuda, S. Jinno, T. A. Pikuz, M. Kando, K. Kondo, and R. Kodama, Laser and Particle Beams, 35, 397 (2017).
    DOI:10.1017/S0263034617000350

 

 

2. Awards

  • September 2022 Student Best Presentation Award, The Physical Society of Japan 2022 Autumn meeting
    Title: Repetitive generation of quasi-monoenergetic multi-MeV protons via interaction of micron-scale hydrogen cluster target with an ultra-intense laser pulse
    Awardee: Takafumi Asai
  • September 2022 Student Best Presentation Award, The Physical Society of Japan 2022 Autumn meeting
    Title: Laser ion acceleration by irradiating a large-area suspended graphene target with a kJ-class picosecond laser without plasma mirror
    Awardee: Takumi Minami
  • April 2022 The Best Student Poster Paper Award, The 11th Advanced Lasers and Photon Sources Conference (ALPS2022) 
    Title: Passive Coherent Beam Combining Based on Divided Pulse Sagnac Geometry
    Awardee: Kento Watanabe
  • November 2021 Taizan Award, Laser Progress Award, Institute for Laser Technology
    Title: Development of the world's highest performance petawatt laser and quantum beam control
    Awardees: H. Kiriyama, A. S. Pirozhkov, M. Kando
  • November 2021 Outstanding Presentation Award, International Conference on Materials and Systems for Sustainability 2021
    Title: The New Measurement Method for Laser-accelerated Sub-GeV-class Protons using Multiple Coulomb Scattering in an Emulsion Cloud Chamber
    Awardee: T. Asai
  • September 2020 Best Poster Award, OPTO 2020 Symposium on Photon and Beam Science
    Title: Study of SiC ceramic mirror for high-power laser system
    Awardee: Y. Miyasaka
  • September 2020 Student Presentation Award of the Physical Society of Japan, The Physical Society of Japan 2022 Autumn meeting
    Title: Development of the Diagnosis for Sub-GeV-class Laser-accelerated Protons by the Multiple Coulomb Scattering Method in a Stack of Nuclear Emulsion Films
    Awardee: T. Asai
  • December 2019 Poster Award (Accelerator Division Award), Kobe University Young Frontier Research Conference 2019
    Title: Calibration of Thomson Parabola Spectrometer by Proton and Gold Ion Irradiation Using Tandem Accelerators 
    Awardees: K. Shimizu, S. Jinno, M. Kanasaki, A. Taniike, Y. Furuyama, K. Oda, T. Yamauchi, Y. Fukuda
  • July 2019 President's Award for Distinguished Achievement in Research and Development, National Institutes for Quantum Science and Technology 
    Title: Research on proton acceleration mechanism using cosmic ray generation mechanism
    Awardees: Y. Fukuda, R. Matsui, Y. Kishimoto 
  • March 2019 Area 2 Student Best Presentation Award, 74th Annual Meeting of the Physical Society of Japan
    Title::Energetic Ion Acceleration with J-KAREN-P Laser Using Nanometer Thickness Graphene Targets 
    Awardees: T. Minami, H. Habara, T. Hihara, K. Sakai, W. Y. Woon, Y. T. Liao, Y. Fukuda, Ko. Kondo, H. Kiriyama, Y. Sakawa, A. Morace, S. Egashira, M. Ota, T. Izumi, T. Morita, M. Takagi, K. Oda, T. Yamauchi, M. Kanasaki, K. Morii, T. Asai, K. Sakamoto, K. Shimizu, S. Jinno, N. Woolsey, L. Döhl, Y. Kuramitsu
  • September 2018 Student Poster Award, 79th Annual Fall Meeting of the Japan Society of Applied Physics, Radiation Section, Student Poster Award
    Title: Measurement of MeV protons accelerated by Coulomb explosion of hydrogen clusters using CR-39 solid-state track detector
    Awardees: K. Morii, M. Uno, T. Asai, K. Sakamoto, K. Shimizu, K. Oda, T. Yamauchi, Y. Fukuda, S. Jinno, M. Kanasaki
  • June 2017 Best Author Award, Journal of Japan Laser Processing Society
    Title: Laser nano ablation induced by the interaction of femtosecond laser with metal surfaces
    Awardee: Y. Miyasaka 
  • March 2017 Best Student Presentation Award, Area 2, 72nd Annual Meeting of the Physical Society of Japan
    Title: 290 MeV Quasimonoenergetic Proton Acceleration by Intracluster Collisionless Shock Waves in the Relativistic Transparency Region
    Awardees: R. Matsui, Y. Fukuda, Y. Kishimoto 

 

 

3. Press releases

  • March 16, 2023 “Strong light transmits through the metal! – New world of the laser driven ion acceleration research via relativistic effect”
  • October 12, 2022 “Successful generation of 100% purity proton beams with uniform energy using powerful lasers -A big step toward the realization of laser-driven proton beam accelerators-”
  • February 16, 2022 “Graphene and an intense laser open the door to the extreme”
  • August 24, 2021 “Development of a method to separately detect carbon ions and oxygen ions accelerated by an intense laser with solid-state nuclear track detectors”
  • July 16, 2020 “the world highest electric field is achieved by the ultra-high intensity laser pulse—Further step towards the compact heavy ion accelerator”
  • February 27, 2020 “Elucidation of the unique properties of the relativistic electrons in a world highest class laser intensity pulses—Key knowledge for the establishment of the compact heavy ion medical accelerators”
  • January 9, 2019 "Proposal for a new accelerator using the mechanism of cosmic ray generation - Discovery that laser-driven shock waves can be used to generate proton beams near the speed of light"
  • December 22, 2017 "Discovery of Intense Soft X-ray Bursts from Plasma Singularities - Proposal for a New Universal Radiation Mechanism that Can Occur in the Universe -"