現在地
Home > Irradiation Facilities Section > Annual Reports, etc.

Irradiation Facilities Section

Annual Reports, etc.

掲載日:2020年3月11日更新
印刷用ページを表示

Recent Annual Reports

Annual Reports on the Facilities

Irradiation Facilities Section writes annual reports with the following two titles every year.

  • Operation of the electron accelerator and the gamma-ray irradiation facilities
  • Utilization status of the electron accelerator and the gamma-ray irradiation facilities
  1. QST-M-23 QST Takasaki Annual Report 2018, pp. 125–126 (2020).
  2. QST-M-16 QST Takasaki Annual Report 2017, pp. 151–152 (2019).
  3. QST-M-8 QST Takasaki Annual Report 2016, pp. 167–168 (2018).
  4. QST-M-2 QST Takasaki Annual Report 2015, pp. 197–198 (2017).

Other Annual Reports

  1. Inactivation of Escherichia coli O157 in raw beef liver by gamma irradiation, S. Kawasaki, H. Seito, and S. Todoriki, QST-M-23 QST Takasaki Annual Report 2018, p. 86 (2020).
  2. Microflora analysis of black pepper using MALDI-TOF mass spectrometry and decontamination by gamma-ray irradiation, H. Kameya, K. Kimura, H. Seito, T. Kojima, and S. Todoriki, QST-M-16 QST Takasaki Annual Report 2017, p. 103 (2019).
  3. Study on the genetic consequence of low dose rate gamma irradiation in plants, Y. Hase, H. Seito, and Y. Oono, QST-M-8 QST Takasaki Annual Report 2016, p. 101 (2018).
  4. Neutron measurements with the bonner sphere spectrometer for the low energy region in the TIARA neutron field, T. Matsumoto, A. Masuda, H. Harano, H. Seito, and S. Kurashima, QST-M-8 QST Takasaki Annual Report 2016, p. 130 (2018).
  5. Handy determination of ion-beam relative intensity distribution based on gamma-ray irradiation response of Gagchromic films, T. Ishizaka, Y. Yuri, T. Agematsu, T. Yuyama, H. Seito, and S. Okumura, QST-M-8 QST Takasaki Annual Report 2016, p. 135 (2018).
  6. An evaluation of microbicidal effectiveness of low energy electron beam with  approach, S. Todoriki,H. Kameya, K. Kimura, H. Seito, and T. Kojima, QST-M-8 QST Takasaki Annual Report 2016, p. 153 (2018).
  7. Measurements of neutron energy spectra of thermal energy region in high energy quasi-monoenergetic neutron fields using a bonner sphere spectrometer, T. Matsumoto, A. Masuda, H. Harano, H. Seito, and S. Kurashima, QST-M-2 QST Takasaki Annual Report 2015, p. 161 (2017).
  8. Periodical calibration of ionization chamber system for 60Co gamma ray high dose rate at radiation processing, H. SeitoY. NagaoT. Agematsu, and T. Kojima, QST-M-2 QST Takasaki Annual Report 2015, p. 184 (2017).

Recent Articles

Peer-Reviewed Articles

  1. Genetic consequences of acute/chronic gamma and carbon ion irradiation of Arabidopsis thaliana, Y. Hase, K. Satoh, H. Seito, and Y. Oono, Frontiers in Plant Science, in press (2020). DOI: 10.3389/fpls.2020.00336
  2. Inactivation of Escherichia coli O157 and Salmonella Enteritidis in raw beef liver by gamma irradiation, S. Kawasaki, M. Saito, M. Mochida, F. Noviyanti, H. Seito, and S. Todoriki, Food Microbiology, vol. 78, pp. 110–113 (2019). DOI: 10.1016/j.fm.2018.10.011
  3. Development of high-sensitivity intra-corporeal catheter-type liquid dosimeter for radiotherapy, A. Kimura, N. Matsufuji, A. Hiroki, H. Seito, and M. Taguchi, Biomedical Physics & Engineering Express, vol. 4, no. 5, Art. no. 055005 (2018). DOI: 10.1088/2057-1976/aad395
  4. Use of a Gafchromic film HD-V2 for the profile measurement of energetic ion beams, Y. Yuri, T. Ishizaka, T. Agematsu, T. Yuyama, H. Seito, and S. Okumura, Nuclear Instruments and Methods in Physics Research Section B, vol. 406, pp. 221–224 (2017). DOI: 10.1016/j.nimb.2017.02.047
  5. Development of the high-energy neutron fluence rate standard field in Japan with a peak energy of 45 MeV using the 7Li(p,n)7Be reaction at TIARA, T. Matsumoto, A. Masuda, H. Harano, Y. Shikaze, Y. Tanimura, H. Seito, S. Kurashima, S. Nishino, H. Yoshitomi, J. Nishimaya, M. Hagiwara, Y. Unno, and M. Yoshizawa, Journal of Nuclear Science and Technology, vol. 54, no. 5, pp. 529–538 (2017). DOI: 10.1080/00223131.2017.1291374

Old Articles

Dosimetry

Ionization Chamber

  1. Standard measurement of processing level gamma ray dose rates with a parallel-plate ionization chamber, R. Tanaka, H. Kaneko, N. Tamura, A. Katoh, and Y. Moriuchi, IAEA-SM-272/17 (1985).
  2. A simplified instrument for solid-state high-gamma dosimetry, R. Tanaka, S. Tajima, and A. Usami, The International Journal of Applied Radiation and Isotopes, vol. 27, no. 2, pp. 73–77 (1976). DOI: 10.1016/0020-708X(76)90179-4
  3. A solid-state ionization chamber for the high-dose-rate measurement of gamma-rays, R. Tanaka, S. Tajima, and A. Usami, The International Journal of Applied Radiation and Isotopes, vol. 24, no. 11, pp. 627–637 (1973). DOI: 10.1016/0020-708X(73)90089-6

Alanine Dosimeter

  1. Measurement of neutron and gamma-ray absorbed doses under criticality accident conditions at TRACY using tissue-equivalent dosimeters, H. Sono, H. Yanagisawa, A. Ohno, T. Kojima, and Noboru Soramasu, Nuclear Science and Engineering, vol. 139, no. 2, pp. 209–220 (2001). DOI: 10.13182/NSE01-A2232
  2. Alanine-polystyrene dosimeters prepared by injection moulding, T. Kojima, S. Kashiwazaki, and Y. Zhang, Applied Radiation and Isotopes, vol. 48, no. 7, pp. 965–968 (1997). DOI: 10.1016/S0969-8043(97)00010-9
  3. Responses of alanine dosimeters to irradiations at cryogenic temperatures, F. Coninckx, A. Janett, T. Kojima, S. Onori, M. Pantaloni, H. Schönbacher, M. Tavlet, and A. Wieser, Applied Radiation and Isotopes, vol. 47, nos. 11–12, pp. 1223–1229 (1996). DOI: 10.1016/S0969-8043(96)00159-5
  4. Radical formation in the radiolysis of solid alanine by heavy ions, H. Koizumi, T. Ichikawa, H. Yoshida, H. Namba, M. Taguchi, and T. Kojima, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol. 117, no. 4, pp. 431–435 (1996). DOI: 10.1016/0168-583X(96)00351-5
  5. Irradiation and ESR analysis temperature dependence of the gamma-ray response of alanine-polystyrene dosimeters, T. Kojima, N. Morishita, H. Itoh, and S. Biramontri, Applied Radiation and Isotopes, vol. 47, no. 4, pp. 457–459 (1996). DOI: 10.1016/0969-8043(95)00278-2
  6. Orientation effects of ESR analysis of alanine-polymer dosimeters, T. Kojima, S. Kashiwazaki, H. Tachibana, R. Tanaka, M.F. Desrosiers, and W.L. McLaughlin, Applied Radiation and Isotopes, vol. 46, no. 12, pp. 1407–1411 (1995). DOI: 10.1016/0969-8043(95)00235-6
  7. Recent progress in JAERI alanine⧸ESR dosimetry system, T. Kojima, H. Tachibana, Y. Haruyama, R. Tanaka, and J. Okamoto, Radiation Physics and Chemistry, vol. 42, nos. 4–6, pp. 813–816 (1993). DOI: 10.1016/0969-806X(93)90379-9
  8. Alanine⧸ESR Dosimetry system for routine use in radiation processing, T. Kojima, Y. Haruyama, H. Tachibana, R. Tanaka, J. Okamoto, K. Yagi, N. Tamura, H. Hara, and S. Kashiwazaki, Radiation Physics and Chemistry, vol. 42, nos. 4–6, pp. 757–760 (1993). DOI: 10.1016/0969-806X(93)90367-4
  9. Development of portable ESR spectrometer as a reader for alanine dosimeters, T. Kojima, Y. Haruyama, H. Tachibana, R. Tanaka, J. Okamoto, H. Hara, and Y. Yamamoto, Applied Radiation and Isotopes, vol. 44, nos. 1–2, pp. 361–365 (1993). DOI: 10.1016/0969-8043(93)90248-9
  10. Thin film alanine-polyethylene dosimeter, T. Kojima, H.L.A. Ranjith, Y. Haruyama, S. Kashiwazaki, and R. Tanaka, Applied Radiation and Isotopes, vol. 44, nos. 1–2, pp. 41–45 (1993). DOI: 10.1016/0969-8043(93)90193-E
  11. Fading characteristics of an alanine-polystyrene dosimeter, T. Kojima, L. Chen, Y. Haruyama, H. Tachibana, and R. Tanaka, International Journal of Radiation Applications and Instrumentation. Part A. Applied Radiation and Isotopes, vol. 43, no. 7, pp. 863–867 (1992). DOI: 10.1016/0883-2889(92)90147-7
  12. Tests of new polystyrene-based scintillators, T. Hasegawa, M. Hazumi, S. Kasai, K. Tokushuku, S. Yamada, T. Kojima, and T. Shimizu, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 311, no. 3, pp. 498–504 (1992). DOI: 10.1016/0168-9002(92)90647-M
  13. Polymer-alanine dosimeter and compact reader, T. Kojima and R. Tanaka, International Journal of Radiation Applications and Instrumentation. Part A. Applied Radiation and Isotopes, vol. 40, nos. 10–12, pp. 851–857 (1989). DOI: 10.1016/0883-2889(89)90006-3
  14. "AMINOGRAY" alanine dosimeter, T. Kojima, Y. Morita, R. Tanaka, S. Kashiwazaki, and S. Matsuyama, HITACHI CABLE REVIEW, no. 7, pp. 85–88 (1988).
  15. Alanine dosimeters using polymers as binders, T. Kojima, R. Tanaka, Y. Morita, and T. Seguchi, International Journal of Radiation Applications and Instrumentation. Part A. Applied Radiation and Isotopes, vol. 37, no. 6, pp. 517–520 (1986). DOI: 10.1016/0883-2889(86)90158-9
  16. Fast neutron irradiation effects—III. Sensitivity of alanine systems for fast neutron having an energy of ∼ 1 MeV, Y. Katsumura, Y. Tabata, T. Seguchi, N. Morishita, and T. Kojima, International Journal of Radiation Applications and Instrumentation. Part C. Radiation Physics and Chemistry, vol. 28, no. 4, pp. 337–341 (1986). DOI: 10.1016/1359-0197(86)90014-7

PMMA Dosimeter

  1. Application of clear polymethylmethacrylate dosimeter Radix W to a few MeV electron in radiation processing, H. Seito, T. Ichikawa, H. Hanaya, Y. Sato, H. Kaneko, Y. Haruyama, H. Watanabe, and T. Kojima, Radiation Physics and Chemistry, vol. 78, no. 11, pp. 961–965 (2009). DOI: 10.1016/j.radphyschem.2009.07.018
  2. Characteristics study of clear polymethylmethacrylate dosimeter, Radix W, in several kGy range, H. Seito, T. Ichikawa, H. Kaneko, Y. Sato, H. Watanabe, and T. Kojima, Radiation Physics and Chemistry, vol. 78, no. 5, pp. 356–359 (2009). DOI: 10.1016/j.radphyschem.2009.03.002
  3. Gamma-ray response of a clear, crosslinked PMMA dosimeter, Radix W, M. Takehisa, Y. Sato, T. Sasuga, N. Haneda, Y. Haruyama, and H. Sunaga, Radiation Physics and Chemistry, vol. 76, no. 10, pp. 1619–1623 (2007). DOI: 10.1016/j.radphyschem.2006.02.002
  4. Effect of low irradiation temperature on the gamma-ray response of dyed and undyed PMMA dosimeters, S. Biramontri, N. Haneda, H. Tachibana, and T. Kojima, Radiation Physics and Chemistry, vol. 48, no. 1, pp. 105–109 (1996). DOI: 10.1016/0969-806X(95)00427-Y
  5. The gamma-ray response of clear polymethylmethacrylate dosimeter radix RN15®, T. Kojima, N. Haneda, S. Mitomo, H. Tachibana, and R. Tanaka, International Journal of Radiation Applications and Instrumentation. Part A. Applied Radiation and Isotopes, vol. 43, no. 10, pp. 1197–1202 (1992). DOI: 10.1016/0883-2889(92)90194-J

Film Dosimeter

  1. 3–45 MeV/u ion beam dosimetry using thin film dosimeters, T. Kojima, H. Sunaga, H. Takizawa, H. Hanaya, and H. Tachibana, Radiation Physics and Chemistry, vol. 68, no. 6, pp. 975–980 (2003). DOI: /10.1016/j.radphyschem.2003.02.001
  2. Effects of temperature, relative humidity, and dose rate on the sensitivity of cellulose triacetate dosimeters to electrons and γ-rays, R. Tanaka, S. Mitomo, and N. Tamura, The International Journal of Applied Radiation and Isotopes, vol. 35, no. 9, pp. 875–881 (1984). DOI: 10.1016/0020-708X(84)90024-3
  3. Properties of cellulose triacetate dose meter, N. Tamura, R. Tanaka, S. Mitomo, K. Matsuda, and S. Nagai, Radiation Physics and Chemistry, vol. 18, nos. 5–6, pp. 947–956 (1981). DOI: 10.1016/0146-5724(81)90285-5

Liquid Dosimeter

  1. Effects of temperature during irradiation and spectrophotometry analysis on the dose response of aqueous dichromate dosimeters, H.H. Mai, H. Tachibana, and T. Kojima, Radiation Physics and Chemistry, vol. 53, no. 1, pp. 85–91 (1998). DOI: 10.1016/S0969-806X(97)00295-8
  2. Fricke dosimetry in low dose range for food irradiation, T. Kume, H. Tachibana, and M. Takehisa, JAERI-M 82-100 (1982). DOI: 10.11484/jaeri-m-82-100

Intercomparative Study

  1. Applicability study on existing dosimetry systems to high-power Bremsstrahlung irradiation, K. Mehta, T. Kojima, and H. Sunaga, Radiation Physics and Chemistry, vol. 68, no. 6, pp. 959–962 (2003). DOI: 10.1016/j.radphyschem.2003.08.007
  2. Consistency in evaluation of a few MeV electron dose and Co-60 gamma ray dose in radiation processing, T. Kojima, H. Sunaga, and R. Tanaka, IAEA-SM-365/56 (2000).
  3. Characterization and evaluation studies on some JAERI dosimetry systems, T. Kojima, H. Sunaga, H. Tachibana, H. Takizawa, and R. Tanaka, IAEA-TECDOC-1156, pp. 91–98 (2000).
  4. Uncertainty estimation in 60Co gamma-ray dosimetry at JAERI involving a two-way dose intercomparison study with NPL in the dose range 1–50 kGy, T. Kojima, H. Tachibana, N. Haneda, I. Kawashima, and P.H.G. Sharpe, Radiation Physics and Chemistry, vol. 54, no. 6, pp. 619–626 (1999). DOI: 10.1016/S0969-806X(98)00282-5
  5. γ-Ray dose intercomparison in the absorbed dose range, 5–50 kGy, using dichromate and alanine dosimeters, H.H. Mai, N.G.D. Duong, and T. Kojima, Applied Radiation and Isotopes, vol. 47, no. 2, pp. 259–261 (1996). DOI: 10.1016/0969-8043(95)00265-0
  6. Investigation of applicability of alanine and radiochromic detectors to dosimetry of proton clinical beams, D. Nichiporov, V. Kostjuchenko, J.M. Puhl, D.L. Bensen, M.F. Desrosiers, C.E. Dick, W.L. Mclaughlin, T. Kojima, B.M. Coursey, and S. Zink, Applied Radiation and Isotopes, vol. 46, no. 12, pp. 1355–1362 (1995). DOI: 10.1016/0969-8043(95)00213-W
  7. Dose intercomparison experiment for gamma rays and 3-MeV electrons by mailing dosimetry using free-radical dosimeters, S.R. Nilekani, G.R. Narayan, B. Suseela, R.M. Bhat, B.L. Gupta, T. Kojima, H. Takizawa, H. Sunaga, and R. Tanaka, Applied Radiation and Isotopes, vol. 46, no. 3, pp. 205–207 (1995). DOI: 10.1016/0969-8043(94)00123-H
  8. Study on dosimetry of bremsstrahlung radiation processing, H. Sunaga, H. Tachibana, R. Tanaka, J. Okamoto, H. Terai, T. Saito, Radiation Physics and Chemistry, vol. 42, nos. 4–6, pp. 749–752 (1993). DOI:  10.1016/0969-806X(93)90365-2
  9. Intercomparative study on low energy electron beam dosimetry, R. Tanaka, H. Sunaga, I. Kuriyama, and Y. Moriuchi, International Journal of Radiation Applications and Instrumentation. Part C. Radiation Physics and Chemistry, vol. 33, no. 5, pp. 407–410 (1989). DOI: 10.1016/1359-0197(89)90103-3

Calorimeter and Electron Current Densitometer

  1. Dosimetry for 110 keV electron beam processing, H. Seito, S. Matsui, T. Hakoda, M. Ishikawa, Y. Haruyama, H. Kaneko, J. Kimura, and T. Kojima, Material Technology, vol. 30, nos. 1–2, pp. 10–16 (2012).
  2. Fluence measurements applied to 5–20 MeV/amu ion beam dosimetry by simultaneous use of a total-absorption calorimeter and a Faraday cup, T. Kojima, H. Sunaga, H. Takizawa, H. Tachibana, and R. Tanaka, Radiation Physics and Chemistry, vol. 53, no. 2, pp. 115–121 (1998). DOI: 10.1016/S0969-806X(98)00015-2
  3. A total-absorption calorimeter for medium-energy electron beam calibration, H. Sunaga, R. Tanaka, N.M. Ali, and K. Yotsumoto, Radiation Physics and Chemistry, vol. 46, nos. 4–6, pp. 1283–1286 (1995). DOI: 10.1016/0969-806X(95)00370-D
  4. A simultaneous electron energy and dosimeter calibration method for an electron beam irradiator, R. Tanaka, H. Sunaga, and T. Kojima, IAEA-SM-314/53 (1991).
  5. Methods for measuring dose and beam profiles of processing electron accelerators, R. Tanaka, H. Sunaga, and T. Agematsu, IAEA-SM-272/18 (1985).
  6. A simple and accurate measurement method of current density of an electron accelerator for irradiation, R. Tanaka, K. Mizuhashi, H. Sunaga, and N. Tamura, Nuclear Instruments and Methods, vol. 174, nos. 1–2, pp. 201–208 (1980). DOI: 10.1016/0029-554X(80)90432-2

みなさんの声を聞かせてください

この記事の内容に満足はできましたか?
この記事は容易に見つけられましたか?