現在地
Home > 照射施設管理課 > 年報等

照射施設管理課

年報等

掲載日:2020年3月11日更新
印刷用ページを表示

最近の年報

施設の年報

照射施設管理課では、以下の2つのタイトルの年報を毎年執筆しています。

  • Operation of the electron accelerator and the gamma-ray irradiation facilities
  • Utilization status of the electron accelerator and the gamma-ray irradiation facilities
  1. QST-M-23 QST Takasaki Annual Report 2018, pp. 125–126 (2020).
  2. QST-M-16 QST Takasaki Annual Report 2017, pp. 151–152 (2019).
  3. QST-M-8 QST Takasaki Annual Report 2016, pp. 167–168 (2018).
  4. QST-M-2 QST Takasaki Annual Report 2015, pp. 197–198 (2017).

その他の年報

  1. Inactivation of Escherichia coli O157 in raw beef liver by gamma irradiation, S. Kawasaki, H. Seito, and S. Todoriki, QST-M-23 QST Takasaki Annual Report 2018, p. 86 (2020).
  2. Microflora analysis of black pepper using MALDI-TOF mass spectrometry and decontamination by gamma-ray irradiation, H. Kameya, K. Kimura, H. Seito, T. Kojima, and S. Todoriki, QST-M-16 QST Takasaki Annual Report 2017, p. 103 (2019).
  3. Study on the genetic consequence of low dose rate gamma irradiation in plants, Y. Hase, H. Seito, and Y. Oono, QST-M-8 QST Takasaki Annual Report 2016, p. 101 (2018).
  4. Neutron measurements with the bonner sphere spectrometer for the low energy region in the TIARA neutron field, T. Matsumoto, A. Masuda, H. Harano, H. Seito, and S. Kurashima, QST-M-8 QST Takasaki Annual Report 2016, p. 130 (2018).
  5. Handy determination of ion-beam relative intensity distribution based on gamma-ray irradiation response of Gagchromic films, T. Ishizaka, Y. Yuri, T. Agematsu, T. Yuyama, H. Seito, and S. Okumura, QST-M-8 QST Takasaki Annual Report 2016, p. 135 (2018).
  6. An evaluation of microbicidal effectiveness of low energy electron beam with  approach, S. Todoriki,H. Kameya, K. Kimura, H. Seito, and T. Kojima, QST-M-8 QST Takasaki Annual Report 2016, p. 153 (2018).
  7. Measurements of neutron energy spectra of thermal energy region in high energy quasi-monoenergetic neutron fields using a bonner sphere spectrometer, T. Matsumoto, A. Masuda, H. Harano, H. Seito, and S. Kurashima, QST-M-2 QST Takasaki Annual Report 2015, p. 161 (2017).
  8. Periodical calibration of ionization chamber system for 60Co gamma ray high dose rate at radiation processing, H. Seito, Y. Nagao, T. Agematsu, and T. Kojima, QST-M-2 QST Takasaki Annual Report 2015, p. 184 (2017).

最近の論文等

査読付論文

  1. Genetic consequences of acute/chronic gamma and carbon ion irradiation of Arabidopsis thaliana, Y. Hase, K. Satoh, H. Seito, and Y. Oono, Frontiers in Plant Science, in press (2020). DOI: 10.3389/fpls.2020.00336
  2. Inactivation of Escherichia coli O157 and Salmonella Enteritidis in raw beef liver by gamma irradiation, S. Kawasaki, M. Saito, M. Mochida, F. Noviyanti, H. Seito, and S. Todoriki, Food Microbiology, vol. 78, pp. 110–113 (2019). DOI: 10.1016/j.fm.2018.10.011
  3. Development of high-sensitivity intra-corporeal catheter-type liquid dosimeter for radiotherapy, A. Kimura, N. Matsufuji, A. Hiroki, H. Seito, and M. Taguchi, Biomedical Physics & Engineering Express, vol. 4, no. 5, Art. no. 055005 (2018). DOI: 10.1088/2057-1976/aad395
  4. Use of a Gafchromic film HD-V2 for the profile measurement of energetic ion beams, Y. Yuri, T. Ishizaka, T. Agematsu, T. Yuyama, H. Seito, and S. Okumura, Nuclear Instruments and Methods in Physics Research Section B, vol. 406, pp. 221–224 (2017). DOI: 10.1016/j.nimb.2017.02.047
  5. ガフクロミックフィルムHD-V2のγ線応答曲線を用いたイオンビームの相対強度分布測定法, 石坂 知久, 百合 庸介, 上松 敬, 湯山 貴裕, 清藤 一, 奥村 進, RADIOISOTOPES, vol. 66, no. 7, pp. 251–258 (2017). DOI: 10.3769/radioisotopes.66.251
  6. Development of the high-energy neutron fluence rate standard field in Japan with a peak energy of 45 MeV using the 7Li(p,n)7Be reaction at TIARA, T. Matsumoto, A. Masuda, H. Harano, Y. Shikaze, Y. Tanimura, H. Seito, S. Kurashima, S. Nishino, H. Yoshitomi, J. Nishimaya, M. Hagiwara, Y. Unno, and M. Yoshizawa, Journal of Nuclear Science and Technology, vol. 54, no. 5, pp. 529–538 (2017). DOI: 10.1080/00223131.2017.1291374

記事

  1. オタワ滞在記, 清藤 一, 放射線と産業, no. 141, pp. 56–59 (2016).

古い論文等

照射施設関連

  1. 放射線加工レベル大線量校正用60Coγ線照射施設の特性評価, 橘 宏行, 小嶋 拓治, 羽田 徳之, 金子 広久, 四本 圭一, 田中 隆一, RADIOISOTOPES, vol. 48, no. 4, pp. 247–256 (1999). DOI: 10.3769/radioisotopes.48.247
  2. 高崎研1号加速器(デュアルビーム型, 2 MeV, 60 kW)の電子線出力特性, 金沢 孝夫, 春山 保幸, 宇野 定則, 四本 圭一, 田中 隆一, 鷲野 正光, 吉田 健三, JAERI-M 86-005 (1986). DOI: 10.11484/jaeri-m-86-005
  3. 2 MeV, 60 kWデュアルビーム形電子加速器照射施設, 四本 圭一, 金沢 孝夫, 春山 保幸, 上松 敬, 水橋 清, 須永 博美, 鷲野 正光, 田村 直幸, JAERI-M 84-032 (1984). DOI: 10.11484/jaeri-m-84-032

線量計測関連

電離箱関連

  1. 放射線加工レベル60Coγ線高線量率校正用電離箱システム, 小嶋 拓治, 橘 宏行, 羽田 徳之, 金子 広久, 春山 保幸, 田中 隆一, RADIOISOTOPES, vol. 50, no. 7, pp. 291–300 (2001). DOI: 10.3769/radioisotopes.50.291
  2. Standard measurement of processing level gamma ray dose rates with a parallel-plate ionization chamber, R. Tanaka, H. Kaneko, N. Tamura, A. Katoh, and Y. Moriuchi, IAEA-SM-272/17 (1985).
  3. A simplified instrument for solid-state high-gamma dosimetry, R. Tanaka, S. Tajima, and A. Usami, The International Journal of Applied Radiation and Isotopes, vol. 27, no. 2, pp. 73–77 (1976). DOI: 10.1016/0020-708X(76)90179-4
  4. 電離箱によるγ線大線量率測定の相互比較および問題点の検討, 田中 隆一, 河合 視己人, 田島 訓, 田村 直幸, 加藤 朗, 山地 磐, 直井 次郎, 森内 和之, JAERI-M 6346 (1975). DOI: 10.11484/jaeri-m-6346
  5. A solid-state ionization chamber for the high-dose-rate measurement of gamma-rays, R. Tanaka, S. Tajima, and A. Usami, The International Journal of Applied Radiation and Isotopes, vol. 24, no. 11, pp. 627–637 (1973). DOI: 10.1016/0020-708X(73)90089-6

アラニン線量計関連

  1. アラニン線量計の低線量・長時間照射下における温度特性, 長尾 悠人, 清藤 一, 桃木 洋平, 金子 広久, 中川 和道, 小嶋 拓治, RADIOISOTOPES, vol. 61, no. 4, pp. 173–177 (2012). DOI: 10.3769/radioisotopes.61.173
  2. Measurement of neutron and gamma-ray absorbed doses under criticality accident conditions at TRACY using tissue-equivalent dosimeters, H. Sono, H. Yanagisawa, A. Ohno, T. Kojima, and Noboru Soramasu, Nuclear Science and Engineering, vol. 139, no. 2, pp. 209–220 (2001). DOI: 10.13182/NSE01-A2232
  3. Alanine-polystyrene dosimeters prepared by injection moulding, T. Kojima, S. Kashiwazaki, and Y. Zhang, Applied Radiation and Isotopes, vol. 48, no. 7, pp. 965–968 (1997). DOI: 10.1016/S0969-8043(97)00010-9
  4. Responses of alanine dosimeters to irradiations at cryogenic temperatures, F. Coninckx, A. Janett, T. Kojima, S. Onori, M. Pantaloni, H. Schönbacher, M. Tavlet, and A. Wieser, Applied Radiation and Isotopes, vol. 47, nos. 11–12, pp. 1223–1229 (1996). DOI: 10.1016/S0969-8043(96)00159-5
  5. Radical formation in the radiolysis of solid alanine by heavy ions, H. Koizumi, T. Ichikawa, H. Yoshida, H. Namba, M. Taguchi, and T. Kojima, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol. 117, no. 4, pp. 431–435 (1996). DOI: 10.1016/0168-583X(96)00351-5
  6. Irradiation and ESR analysis temperature dependence of the gamma-ray response of alanine-polystyrene dosimeters, T. Kojima, N. Morishita, H. Itoh, and S. Biramontri, Applied Radiation and Isotopes, vol. 47, no. 4, pp. 457–459 (1996). DOI: 10.1016/0969-8043(95)00278-2
  7. Orientation effects of ESR analysis of alanine-polymer dosimeters, T. Kojima, S. Kashiwazaki, H. Tachibana, R. Tanaka, M.F. Desrosiers, and W.L. McLaughlin, Applied Radiation and Isotopes, vol. 46, no. 12, pp. 1407–1411 (1995). DOI: 10.1016/0969-8043(95)00235-6
  8. アラニン線量計の放射線治療線量レベル(1–100 Gy)への応用, 小嶋 拓治, 津田 政行, RADIOISOTOPES, vol. 44, no. 9, pp. 603–607 (1995). DOI: 10.3769/radioisotopes.44.9_603
  9. アラニン線量計の低線量率・長時間照射下の特性—放射線環境下で使用される有機材料の余寿命予測—, 春山 保幸, 橘 宏行, 小嶋 拓治, 岡本 次郎, 柏崎 茂, 松山 茂樹, 柳生 秀樹, RADIOISOTOPES, vol. 44, no. 8, pp. 507–513 (1995). DOI: 10.3769/radioisotopes.44.8_507
  10. 細粒アラニン結晶を用いたフィルム状線量計素子の成形条件と線量応答特性, 小嶋 拓治, 春山 保幸, S. Sudiro, R.L. Tobing, 柏崎 茂, RADIOISOTOPES, vol. 42, no. 11, pp. 607–613 (1993). DOI: 10.3769/radioisotopes.42.11_607
  11. Recent progress in JAERI alanine⧸ESR dosimetry system, T. Kojima, H. Tachibana, Y. Haruyama, R. Tanaka, and J. Okamoto, Radiation Physics and Chemistry, vol. 42, nos. 4–6, pp. 813–816 (1993). DOI: 10.1016/0969-806X(93)90379-9
  12. Alanine⧸ESR Dosimetry system for routine use in radiation processing, T. Kojima, Y. Haruyama, H. Tachibana, R. Tanaka, J. Okamoto, K. Yagi, N. Tamura, H. Hara, and S. Kashiwazaki, Radiation Physics and Chemistry, vol. 42, nos. 4–6, pp. 757–760 (1993). DOI: 10.1016/0969-806X(93)90367-4
  13. Development of portable ESR spectrometer as a reader for alanine dosimeters, T. Kojima, Y. Haruyama, H. Tachibana, R. Tanaka, J. Okamoto, H. Hara, and Y. Yamamoto, Applied Radiation and Isotopes, vol. 44, nos. 1–2, pp. 361–365 (1993). DOI: 10.1016/0969-8043(93)90248-9
  14. Thin film alanine-polyethylene dosimeter, T. Kojima, H.L.A. Ranjith, Y. Haruyama, S. Kashiwazaki, and R. Tanaka, Applied Radiation and Isotopes, vol. 44, nos. 1–2, pp. 41–45 (1993). DOI: 10.1016/0969-8043(93)90193-E
  15. Fading characteristics of an alanine-polystyrene dosimeter, T. Kojima, L. Chen, Y. Haruyama, H. Tachibana, and R. Tanaka, International Journal of Radiation Applications and Instrumentation. Part A. Applied Radiation and Isotopes, vol. 43, no. 7, pp. 863–867 (1992). DOI: 10.1016/0883-2889(92)90147-7
  16. 電子スピン共鳴(ESR)法を用いた大線量測定, 小嶋 拓治, 田中 隆一, RADIOISOTOPES, vol. 41, no. 6, pp. 320–330 (1992). DOI: 10.3769/radioisotopes.41.6_320
  17. Tests of new polystyrene-based scintillators, T. Hasegawa, M. Hazumi, S. Kasai, K. Tokushuku, S. Yamada, T. Kojima, and T. Shimizu, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 311, no. 3, pp. 498–504 (1992). DOI: 10.1016/0168-9002(92)90647-M
  18. Polymer-alanine dosimeter and compact reader, T. Kojima and R. Tanaka, International Journal of Radiation Applications and Instrumentation. Part A. Applied Radiation and Isotopes, vol. 40, nos. 10–12, pp. 851–857 (1989). DOI: 10.1016/0883-2889(89)90006-3
  19. "AMINOGRAY" alanine dosimeter, T. Kojima, Y. Morita, R. Tanaka, S. Kashiwazaki, and S. Matsuyama, HITACHI CABLE REVIEW, no. 7, pp. 85–88 (1988).
  20. アラニン線量計システムの開発, 小嶋 拓治, 田中 隆一, 放射線, vol. 14, no. 2, pp. 27–37 (1988).
  21. アラニン線量計, 田中 隆一, RADIOISOTOPES, vol. 36, no. 11, p. A82P (1987). DOI: 10.3769/radioisotopes.36.11_A81P
  22. ポリスチレンを用いて成形したアラニン線量計, 小島 拓治, 田中 隆一, 森田 洋右, 瀬口 忠男, 吉田 健三, JAERI-M 86-137 (1986). DOI: 10.11484/jaeri-m-86-137
  23. Alanine dosimeters using polymers as binders, T. Kojima, R. Tanaka, Y. Morita, and T. Seguchi, International Journal of Radiation Applications and Instrumentation. Part A. Applied Radiation and Isotopes, vol. 37, no. 6, pp. 517–520 (1986). DOI: 10.1016/0883-2889(86)90158-9
  24. Fast neutron irradiation effects—III. Sensitivity of alanine systems for fast neutron having an energy of ∼ 1 MeV, Y. Katsumura, Y. Tabata, T. Seguchi, N. Morishita, and T. Kojima, International Journal of Radiation Applications and Instrumentation. Part C. Radiation Physics and Chemistry, vol. 28, no. 4, pp. 337–341 (1986). DOI: 10.1016/1359-0197(86)90014-7

PMMA線量計関連

  1. Radix W線量計の数kGy領域でのガンマ線応答特性, 市川 達也, 清藤 一, 佐藤 良成, 武久 正昭, 小嶋 拓治, 渡辺 宏, 食品照射, vol. 45, nos. 1–2, pp. 1–3 (2010). DOI: 10.5986/jrafi.45.1
  2. Application of clear polymethylmethacrylate dosimeter Radix W to a few MeV electron in radiation processing, H. Seito, T. Ichikawa, H. Hanaya, Y. Sato, H. Kaneko, Y. Haruyama, H. Watanabe, and T. Kojima, Radiation Physics and Chemistry, vol. 78, no. 11, pp. 961–965 (2009). DOI: 10.1016/j.radphyschem.2009.07.018
  3. Characteristics study of clear polymethylmethacrylate dosimeter, Radix W, in several kGy range, H. Seito, T. Ichikawa, H. Kaneko, Y. Sato, H. Watanabe, and T. Kojima, Radiation Physics and Chemistry, vol. 78, no. 5, pp. 356–359 (2009). DOI: 10.1016/j.radphyschem.2009.03.002
  4. PMMA線量計(Radix RN–15)の数kGy領域への応用, 清藤 一, 市川 達也, 渡辺 宏, 小嶋 拓治, RADIOISOTOPES, vol. 56, no. 12, pp. 777–785 (2007). DOI: 10.3769/radioisotopes.56.777
  5. Gamma-ray response of a clear, crosslinked PMMA dosimeter, Radix W, M. Takehisa, Y. Sato, T. Sasuga, N. Haneda, Y. Haruyama, and H. Sunaga, Radiation Physics and Chemistry, vol. 76, no. 10, pp. 1619–1623 (2007). DOI: 10.1016/j.radphyschem.2006.02.002
  6. Effect of low irradiation temperature on the gamma-ray response of dyed and undyed PMMA dosimeters, S. Biramontri, N. Haneda, H. Tachibana, and T. Kojima, Radiation Physics and Chemistry, vol. 48, no. 1, pp. 105–109 (1996). DOI: 10.1016/0969-806X(95)00427-Y
  7. The gamma-ray response of clear polymethylmethacrylate dosimeter radix RN15®, T. Kojima, N. Haneda, S. Mitomo, H. Tachibana, and R. Tanaka, International Journal of Radiation Applications and Instrumentation. Part A. Applied Radiation and Isotopes, vol. 43, no. 10, pp. 1197–1202 (1992). DOI: 10.1016/0883-2889(92)90194-J
  8. 大強度電子線の吸収に関する電荷蓄積効果とビーム・プラズマ効果, 田中 隆一, 放射線, vol. 2, no. 4, pp. 22–32 (1975).

フィルム線量計関連

  1. Gafフィルム線量計とイメージスキャナを組合せた簡便なイオンビームの2次元線量相対分布計測システム, 上松 敬, 花屋 博秋, 小嶋 拓治, RADIOISOTOPES, vol. 57, no. 2, pp. 87–98 (2008). DOI: 10.3769/radioisotopes.57.87
  2. 3–45 MeV/u ion beam dosimetry using thin film dosimeters, T. Kojima, H. Sunaga, H. Takizawa, H. Hanaya, and H. Tachibana, Radiation Physics and Chemistry, vol. 68, no. 6, pp. 975–980 (2003). DOI: /10.1016/j.radphyschem.2003.02.001
  3. プロトンビーム照射における線量測定への三酢酸セルロース(CTA)線量計の応用, 須永 博美, 上松 敬, 田中 隆一, 吉田 健三, 河野 功, RADIOISOTOPES, vol. 37, no. 2, pp. 84–87 (1988). DOI: 10.3769/radioisotopes.37.2_84
  4. Effects of temperature, relative humidity, and dose rate on the sensitivity of cellulose triacetate dosimeters to electrons and γ-rays, R. Tanaka, S. Mitomo, and N. Tamura, The International Journal of Applied Radiation and Isotopes, vol. 35, no. 9, pp. 875–881 (1984). DOI: 10.1016/0020-708X(84)90024-3
  5. CTA線量計マニュアル, 田中 隆一, 三友 昭市, 須永 博美, 松田 光司, 田村 直幸, JAERI-M 82-033 (1982). DOI: 10.11484/jaeri-m-82-033
  6. Properties of cellulose triacetate dose meter, N. Tamura, R. Tanaka, S. Mitomo, K. Matsuda, and S. Nagai, Radiation Physics and Chemistry, vol. 18, nos. 5–6, pp. 947–956 (1981). DOI: 10.1016/0146-5724(81)90285-5
  7. γ線,電子線に対するCTAフィルム線量計の線量校正, 田中 隆一, 四本 圭一, 田島 訓, 河合 視己人, 水橋 清, 景山 英一, JAERI-M 5608 (1974). DOI: 10.11484/jaeri-m-5608

液体線量計関連

  1. Effects of temperature during irradiation and spectrophotometry analysis on the dose response of aqueous dichromate dosimeters, H.H. Mai, H. Tachibana, and T. Kojima, Radiation Physics and Chemistry, vol. 53, no. 1, pp. 85–91 (1998). DOI: 10.1016/S0969-806X(97)00295-8
  2. 5–50 kGyの基準線量測定用硫酸セリウム線量計, 小嶋 拓治, 羽田 徳之, 田中 隆一, 鷲野 正光, JAERI-M 88-096 (1988). DOI: 10.11484/jaeri-m-88-096
  3. 旋光度変化を利用したメガグレイレベルのグルコース線量計, 小嶋 拓治, 神沢 康弘, 田中 隆一, 吉田 健三, JAERI-M 87-201 (1987). DOI: 10.11484/jaeri-m-87-201
  4. Fricke dosimetry in low dose range for food irradiation, T. Kume, H. Tachibana, and M. Takehisa, JAERI-M 82-100 (1982). DOI: 10.11484/jaeri-m-82-100

線量計間比較関連

  1. Applicability study on existing dosimetry systems to high-power Bremsstrahlung irradiation, K. Mehta, T. Kojima, and H. Sunaga, Radiation Physics and Chemistry, vol. 68, no. 6, pp. 959–962 (2003). DOI: 10.1016/j.radphyschem.2003.08.007
  2. Consistency in evaluation of a few MeV electron dose and Co-60 gamma ray dose in radiation processing, T. Kojima, H. Sunaga, and R. Tanaka, IAEA-SM-365/56 (2000).
  3. Characterization and evaluation studies on some JAERI dosimetry systems, T. Kojima, H. Sunaga, H. Tachibana, H. Takizawa, and R. Tanaka, IAEA-TECDOC-1156, pp. 91–98 (2000).
  4. Uncertainty estimation in 60Co gamma-ray dosimetry at JAERI involving a two-way dose intercomparison study with NPL in the dose range 1–50 kGy, T. Kojima, H. Tachibana, N. Haneda, I. Kawashima, and P.H.G. Sharpe, Radiation Physics and Chemistry, vol. 54, no. 6, pp. 619–626 (1999). DOI: 10.1016/S0969-806X(98)00282-5
  5. γ-Ray dose intercomparison in the absorbed dose range, 5–50 kGy, using dichromate and alanine dosimeters, H.H. Mai, N.G.D. Duong, and T. Kojima, Applied Radiation and Isotopes, vol. 47, no. 2, pp. 259–261 (1996). DOI: 10.1016/0969-8043(95)00265-0
  6. Investigation of applicability of alanine and radiochromic detectors to dosimetry of proton clinical beams, D. Nichiporov, V. Kostjuchenko, J.M. Puhl, D.L. Bensen, M.F. Desrosiers, C.E. Dick, W.L. Mclaughlin, T. Kojima, B.M. Coursey, and S. Zink, Applied Radiation and Isotopes, vol. 46, no. 12, pp. 1355–1362 (1995). DOI: 10.1016/0969-8043(95)00213-W
  7. Dose intercomparison experiment for gamma rays and 3-MeV electrons by mailing dosimetry using free-radical dosimeters, S.R. Nilekani, G.R. Narayan, B. Suseela, R.M. Bhat, B.L. Gupta, T. Kojima, H. Takizawa, H. Sunaga, and R. Tanaka, Applied Radiation and Isotopes, vol. 46, no. 3, pp. 205–207 (1995). DOI: 10.1016/0969-8043(94)00123-H
  8. Study on dosimetry of bremsstrahlung radiation processing, H. Sunaga, H. Tachibana, R. Tanaka, J. Okamoto, H. Terai, T. Saito, Radiation Physics and Chemistry, vol. 42, nos. 4–6, pp. 749–752 (1993). DOI:  10.1016/0969-806X(93)90365-2
  9. Intercomparative study on low energy electron beam dosimetry, R. Tanaka, H. Sunaga, I. Kuriyama, and Y. Moriuchi, International Journal of Radiation Applications and Instrumentation. Part C. Radiation Physics and Chemistry, vol. 33, no. 5, pp. 407–410 (1989). DOI: 10.1016/1359-0197(89)90103-3

カロリメータ、電子流密度測定器関連

  1. Dosimetry for 110 keV electron beam processing, H. Seito, S. Matsui, T. Hakoda, M. Ishikawa, Y. Haruyama, H. Kaneko, J. Kimura, and T. Kojima, 材料技術, vol. 30, nos. 1–2, pp. 10–16 (2012).
  2. ガス処理用300 keV電子ビーム照射場における吸収線量率分布, 箱田 照幸, 須永 博美, 瀧澤 春喜, 広田 耕一, 小嶋 拓治, RADIOISOTOPES, vol. 53, no. 2, pp. 59–69 (2004). DOI: 10.3769/radioisotopes.53.59
  3. Fluence measurements applied to 5–20 MeV/amu ion beam dosimetry by simultaneous use of a total-absorption calorimeter and a Faraday cup, T. Kojima, H. Sunaga, H. Takizawa, H. Tachibana, and R. Tanaka, Radiation Physics and Chemistry, vol. 53, no. 2, pp. 115–121 (1998). DOI: 10.1016/S0969-806X(98)00015-2
  4. A total-absorption calorimeter for medium-energy electron beam calibration, H. Sunaga, R. Tanaka, N.M. Ali, and K. Yotsumoto, Radiation Physics and Chemistry, vol. 46, nos. 4–6, pp. 1283–1286 (1995). DOI: 10.1016/0969-806X(95)00370-D
  5. A simultaneous electron energy and dosimeter calibration method for an electron beam irradiator, R. Tanaka, H. Sunaga, and T. Kojima, IAEA-SM-314/53 (1991).
  6. Methods for measuring dose and beam profiles of processing electron accelerators, R. Tanaka, H. Sunaga, and T. Agematsu, IAEA-SM-272/18 (1985).
  7. A simple and accurate measurement method of current density of an electron accelerator for irradiation, R. Tanaka, K. Mizuhashi, H. Sunaga, and N. Tamura, Nuclear Instruments and Methods, vol. 174, nos. 1–2, pp. 201–208 (1980). DOI: 10.1016/0029-554X(80)90432-2
  8. 照射用電子加速器の線束密度分布の計算, 田中 隆一, JAERI-M 6998 (1977). DOI: 10.11484/jaeri-m-6998

シミュレーション関連 

  1. 60Coγ線照射場における線量率分布のシミュレーション手法, 金子 広久, 春山 保幸, 清藤 一, 山縣 諒平, 花屋 博秋, 小嶋 拓治, RADIOISOTOPES, vol. 59, no. 1, pp. 11–19 (2010). DOI: 10.3769/radioisotopes.59.11
  2. モンテカルロ電子輸送コード(EGS4-SPGコード)を用いた300 keV電子ビーム照射空気中の空間線量率分布計算, 箱田 照幸, 花屋 博秋, 金子 広久, 宮下 敦巳, 小嶋 拓治, RADIOISOTOPES, vol. 54, no. 6, pp. 161–168 (2005). DOI: 10.3769/radioisotopes.54.161

総説・著書等

  1. 大線量域の放射線計測とその応用, 小嶋 拓治, 清藤 一, 計測標準と計量管理, vol. 57, no. 3, pp. 23–28 (2007).
  2. 低エネルギー電子線照射の技術と応用, 鷲尾 方一 監修, 佐々木 隆, 木下 忍 編, シーエムシー出版 (2006).
  3. 工業照射利用における線量計測技術, 田中 隆一, RADIOISOTOPES, vol. 40, no. 12, p. A67P (1991). DOI: 10.3769/radioisotopes.40.12_A67P
  4. 工業照射用の電子線量計測, 放射線利用振興協会 大線量測定研究委員会 編, 地人書館 (1990).
  5. 大線量計測技術の現状, 田中 隆一, 放射線, vol. 15, no. 1, pp. 105–119 (1988).