現在地
Home > 関西光量子科学研究所 > 関西光量子科学研究所 | 【現地およびweb開催】第106回KPSIセミナー Contaminant layer depletion and ion focusing using the Target Normal Sheath Acceleration (TNSA) mechanism

関西光量子科学研究所

関西光量子科学研究所 | 【現地およびweb開催】第106回KPSIセミナー Contaminant layer depletion and ion focusing using the Target Normal Sheath Acceleration (TNSA) mechanism

掲載日:2024年7月8日更新
印刷用ページを表示

  関西光量子科学研究所 >> KPSIセミナー >>Contaminant layer depletion and ion focusing using the Target Normal Sheath Acceleration (TNSA)mechanism

 

セミナー

第106回KPSIセミナー(現地及びweb開催)

Contaminant layer depletion and ion focusing using the Target Normal Sheath Acceleration (TNSA)mechanism

 

講演者

​ローレンス・リバモア国立研究所​ Plasma Physicist  Prof. Drew Higginson

日時

2024年7月22日(月)13時30分~

会場 大会議室 (A119) およびオンライン
使用言語 英語
要旨 [PDFファイル/92KB]

 

Prof. Drew Higginson

Lawrence Livermore National Laboratory

概要(Abstract)

 

When a relativistic laser (> 1018 W/cm2) laser is incident on a solid target, the laser directly accelerates electrons to kinetic energies exceeding many MeV. If the solid target is relatively thin, less than 100 µm or so, the electrons will create a strong electrostatic field along the target-vacuum interface. This sheath field then accelerates ions normal to the target surface; a process called target normal sheath acceleration (TNSA) [1]. TNSA is a robust process that has been studied for more than 20 years [2]. An enduring feature of TNSA is the dominant acceleration of protons independent of the target material (e.g., Cu, Au, plastic). This is due to the presence of hydrocarbon contaminants on the target surface. These contaminants can be removed by heating or sputtering, which require external equipment. However, if the laser fluence is high enough, then the protons can be depleted by the laser itself [3]. Using this process, we show a factor of 100 increase in conversion efficiency into deuterons from a deuterated plastic target irradiated by a high-fluence laser [4].

​In addition to accelerating ions, the electron-generated electric fields can be used to focus ions. This can be accomplished by using a separated plasma lens to focus ions many millimeters away from the target; for instance, at 30 mm a 1 mm focal radius of the ions can be attained [5]. Additionally, the TNSA target can be spherically curved in such a way that the fields accelerate ions inward to achieve focal radii of less than 10 µm at around 100 µm from the target surface [6]. In theory, the radius of curvature of these targets will adjust the focus distance of the ions. We will discuss the topics of contaminant layer depletion and ion focusing using a combination of experimental data and particle-in-cell simulations.

 

References

[1] Wilks et al., Phys. Plasmas 8, 542 (2001).             

[2] Hatchett et al., Phys. Plasmas 7, 2076 (2000).

[3] Petrov et al., Phys. Plasmas 17, 103111 (2010).

[4] Higginson et al., Phys. Rev. Research 4, 033113 (2022).

[5] Toncian et al., Science 312, 410 (2006); Higginson et al., PRL 115, 054802 (2015).

[6] Bartal et al., Nature Phys 8, 139 (2012).

 

[前の記事]

【現地開催及びオンライン】第105回 KPSIセミナー プレスリリース文はラブレター? -自分の想いを相手に伝え、行動してもらうために-​

Adobe Reader

PDF形式のファイルをご覧いただく場合には、Adobe社が提供するAdobe Readerが必要です。
Adobe Readerをお持ちでない方は、バナーのリンク先からダウンロードしてください。(無料)
Adobe Reader provided by Adobe is required to view PDF format files.